Cho hàm số bậc nhất y = (m – 2)x + m + 1 (m là tham số)
a) Với giá trị nào của m thì hàm số y là hàm số đồng biến?
b) Tìm giá trị của m để đồ thị hàm số đi qua điểm M(2; 6).
c) Đồ thị hàm số cắt trục hoành tại A, cắt trục tung tại B (A và B không trùng với gốc tọa độ O). Gọi H là chân đường cao hạ từ O của tam giác OAB. Xác định giá trị của m, biết \(OH = \sqrt 2 \).
Bằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
a) Hàm số đồng biến khi m – 2 > 0
Hay m > 2
b) Đồ thị hàm số đi qua điểm M(2; 6)
⇔ 6 = 2(m – 2) + m + 1
⇔ 6 = 3m – 3
⇔ 9 = 3m
⇔ m = 3
c) Ta có
Đồ thị hàm số cắt trục hoành tại A, cắt trục tung tại B (A và B không trùng với gốc tọa độ O) nên đồ thị hàm số đã cho không đi qua gốc tọa độ và không song song với hai trục
Suy ra m – 2 ≠ 0 và m + 1 ≠ 0
Hay m ≠ 2 và m ≠ – 1
Khi đó \[{\rm{A}}\left( {\frac;0} \right)\] và B(0; m + 1)
Suy ra \(OA = \left| {\frac} \right|\) và \(OB = \left| {m + 1} \right|\)
Xét tam giác AOB vuông tại O có OH ⊥ AB
Suy ra \(\frac{1}{{O{H^2}}} = \frac{1}{{O{A^2}}} + \frac{1}{{O{B^2}}}\) (hệ thức lượng trong tam giác vuông)
Hay \(\frac{1}{{O{H^2}}} = \frac{{{{\left( {m - 2} \right)}^2}}}{{{{\left( {m + 1} \right)}^2}}} + \frac{1}{{{{\left( {m + 1} \right)}^2}}}\)
⇔ \(\frac{1}{{{{\left( {\sqrt 2 } \right)}^2}}} = \frac{{{m^2} - 4m + 5}}{{{{\left( {m + 1} \right)}^2}}}\)
⇔ (m + 1)2 = 2(m2 – 4m + 5)
⇔ m2 + 2m + 1 = 2m2 – 8m + 10
⇔ m2 – 10m + 9 = 0
⇔ (m – 1)(m – 9) = 0
⇔ \(\left[ \begin{array}{l}m = 1\\m = 9\end{array} \right.\)
Vậy m = 1 hoặc m = 9.
Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi
Vui | Buồn | Bình thường |