Bài tập  /  Bài đang cần trả lời

Cho tam giác ABC có trực tâm H, trọng tâm G và tâm đường tròn ngoại tiếp O. Gọi M là trung điểm của BC. Chứng minh rằng \[\overrightarrow {AH} = 2\overrightarrow {OM} .\]

Cho tam giác ABC có trực tâm H, trọng tâm G và tâm đường tròn ngoại tiếp O.

Gọi M là trung điểm của BC. Chứng minh rằng \[\overrightarrow {AH} = 2\overrightarrow {OM} .\]

1 Xem trả lời
Hỏi chi tiết
16
0
0
Đặng Bảo Trâm
11/09/2024 21:41:09

Lời giải

Kẻ đường kính AD. Hai điểm B, C thuộc đường tròn đường kính AD nên \(\widehat {ABD} = \widehat {ACD} = 90^\circ \)

Hay BD ⊥ AB, CD ⊥ AC

Lại có H là trực tâm ∆ABC nên BH ⊥ AC, CH ⊥ AB

BH /// CD và CH // BD

BHCD là hình bình hành (dấu hiệu nhận biết)

Hai đường chéo cắt nhau tại trung điểm của mỗi đường (tính chất hình bình hành)

Mà M là trung điểm của BC

M là trung điểm của HD

Mà O là trung điểm của AD

Khi đó OM là đường trung bình của ∆AHD

OM // AH và \(AH = 2.OM\) (tính chất đường trung bình)

Do đó hai vectơ \(\overrightarrow {AH} \) và \(\overrightarrow {OM} \) có:

+ Cùng phương, cùng hướng

+ Độ dài: \(\left| {\overrightarrow {AH} } \right| = 2\left| {\overrightarrow {OM} } \right|\)

\[ \Rightarrow \overrightarrow {AH} = 2\overrightarrow {OM} .\]

Vậy \[\overrightarrow {AH} = 2\overrightarrow {OM} .\]

Mở khóa để xem toàn bộ nội dung trả lời

(?)
Bạn đã đạt đến giới hạn của mình. Bằng cách Đăng ký tài khoản, bạn có thể xem toàn bộ nội dung trả lời
Cải thiện điểm số của bạn bằng cách đăng ký tài khoản Lazi.
Xem toàn bộ các câu trả lời, chat trực tiếp 1:1 với đội ngũ Gia sư Lazi bằng cách Đăng nhập tài khoản ngay bây giờ
Tôi đã có tài khoản? Đăng nhập

Bạn hỏi - Lazi trả lời

Bạn muốn biết điều gì?

GỬI CÂU HỎI
Học tập không giới hạn cùng học sinh cả nước và AI, sôi động, tích cực, trải nghiệm
Câu hỏi liên quan

Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi

Vui Buồn Bình thường
×
Trợ lý ảo Trợ lý ảo
×
Đấu trường tri thức | Lazi Quiz Challenge +500k
Gửi câu hỏi
×