Cho tam giác ABC.
Tìm điểm K thoả mãn \(\overrightarrow {KA} + 2\overrightarrow {KB} + 3\overrightarrow {KC} = \overrightarrow 0 .\)
Bằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
Lời giải
Gọi I là trung điểm của AC, H là trung điểm của BC.
Khi đó \[\overrightarrow {KA} + \overrightarrow {KC} = 2\overrightarrow {KI} \]và \[\overrightarrow {KB} + \overrightarrow {KC} = 2\overrightarrow {KH} \]
\[ \Rightarrow \overrightarrow {KA} + 2\overrightarrow {KB} + 3\overrightarrow {KC} = \left( {\overrightarrow {KA} + \overrightarrow {KC} } \right) + 2\left( {\overrightarrow {KB} + \overrightarrow {KC} } \right)\]
\( = 2\overrightarrow {KI} + 2.2\overrightarrow {KH} \)\[ = 2\overrightarrow {KI} + 4\overrightarrow {KH} \]
Mà \(\overrightarrow {KA} + 2\overrightarrow {KB} + 3\overrightarrow {KC} = \overrightarrow 0 .\)
Nên \[2\overrightarrow {KI} + 4\overrightarrow {KH} = \overrightarrow 0 \]
\[ \Rightarrow 2\overrightarrow {KI} = - 4\overrightarrow {KH} \]
\[ \Rightarrow \overrightarrow {KI} = - 2\overrightarrow {KH} \]
Khi đó \[\overrightarrow {KI} \] và \[\overrightarrow {KH} \] là hai vectơ cùng phương, ngược hướng và \(\left| {\overrightarrow {KI} } \right| = 2\left| {\overrightarrow {KH} } \right|\)
Do đó điểm K nằm giữa hai điểm I và H sao cho KI = 2KH.
Vậy ta có điểm K thỏa mãn \(\overrightarrow {KA} + 2\overrightarrow {KB} + 3\overrightarrow {KC} = \overrightarrow 0 \) như hình vẽ.
Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi
Vui | Buồn | Bình thường |