Trong mặt phẳng toạ độ Oxy cho ba điểm A(–3; 2), B(1; 5) và C(3; −1).
Tìm toạ độ trực tâm H của tam giác ABC.
Bằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
Lời giải
Vì H là trực tâm của tam giác ABC nên AH ⊥ BC và BH ⊥ AC
Hay \(\overrightarrow {AH} .\overrightarrow {BC} = 0\) và \(\overrightarrow {BH} .\overrightarrow {AC} = 0\)
Giả sử H(x; y) là tọa độ trực tâm tam giác ABC
Với A(–3; 2), B(1; 5), C(3; −1) và H(x; y) ta có:
• \(\overrightarrow {AH} = \left( {x + 3;y - 2} \right)\) và \(\overrightarrow {BC} = \left( {2; - 6} \right)\)
\( \Rightarrow \overrightarrow {AH} .\overrightarrow {BC} = \left( {x + 3} \right).2 + \left( {y - 2} \right).\left( { - 6} \right) = 0\)
2x – 6y = –18
x – 3y = –9(1)
• \(\overrightarrow {BH} = \left( {x - 1;y - 5} \right)\) và \(\overrightarrow {AC} = \left( {6; - 3} \right)\)
\( \Rightarrow \overrightarrow {BH} .\overrightarrow {AC} = \left( {x - 1} \right).6 + \left( {y - 5} \right).\left( { - 3} \right) = 0\)
6x – 3y = –9(2)
Trừ vế theo vế (2) cho (1) ta có:
5x = 0 x = 0
y = 3
H(0; 3)
Vậy tọa độ trực tâm của tam giác ABC là H(0; 3)
Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi
Vui | Buồn | Bình thường |