Chứng minh nếu m, n là số lẻ thì m2 + n2 chẵn.
Bằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
Giả sử m, n có dạng 2k + 1, 2v + 1
Ta có: m2 + n2 = (2k + 1)2 + (2v + 1)2 = 4k2 + 4k + 1 + 4v2 + 4v + 1
= 4k2 + 4k + 4v2 + 4v + 2
Thấy 4k2 + 4k + 4v2 + 4v + 2 chia hết cho 2
Suy ra: 4k2 + 4k + 4v2 + 4v + 2 là số chẵn
Vậy m2 + n2 chẵn khi m, n là số lẻ.
Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi
Vui | Buồn | Bình thường |