LH Quảng cáo: lazijsc@gmail.com

Bài tập  /  Bài đang cần trả lời

Cho tam giác ABC vuông tại A, đường cao AH. a) AB = 6 cm, BC = 10 cm. Tính AC, BH, HC, AH. b) BH = 1 cm, AH = 2 cm. Tính HC, AC, BA, BC. c) BH = 4 cm, HC = 9 cm. Tính BC, AB, AH, AC. d) BH = 9 cm, AC = 20 cm. Tính HC, AH, AB, BC.

Cho tam giác ABC vuông tại A, đường cao AH.

a) AB = 6 cm, BC = 10 cm. Tính AC, BH, HC, AH.

b) BH = 1 cm, AH = 2 cm. Tính HC, AC, BA, BC.

c) BH = 4 cm, HC = 9 cm. Tính BC, AB, AH, AC.

d) BH = 9 cm, AC = 20 cm. Tính HC, AH, AB, BC.

1 trả lời
Hỏi chi tiết
4
0
0
Trần Bảo Ngọc
11/09 21:52:09

a) AB = 6 cm, BC = 10 cm. Tính AC, BH, HC, AH.

• Vì tam giác ABC vuông tại A nên BC2 = AB2 + AC2 (định lí Pytago)

Suy ra \(AC = \sqrt {B{C^2} - A{B^2}} = \sqrt {{{10}^2} - {6^2}} = 8\) (cm)

• Xét DABC vuông tại A có AH là đường cao nên ta có:

AB2 = BH.BC, suy ra \(BH = \frac{{A{B^2}}} = \frac{{{6^2}}} = 3,6\left( {cm} \right)\).

AC2 = CH.BC, suy ra \(CH = \frac{{A{C^2}}} = \frac{{{8^2}}} = 6,4\left( {cm} \right)\).

AH . BC = AB . AC, suy ra \(AH = \frac = \frac = 4,8\left( {cm} \right)\)

b) BH = 1 cm, AH = 2 cm. Tính HC, AC, BA, BC.

• Vì tam giác ABC vuông tại A có AH là đường cao nên:

AH2 = BH.CH, suy ra \[CH = \frac{{A{H^2}}} = \frac{{{2^2}}}{1} = 4\left( {cm} \right)\].

• Vì DACH vuông tại H nên AC2 = AH2 + CH2 (định lí Pytago)

Suy ra \(AC = \sqrt {{2^2} + {4^2}} = 2\sqrt 5 \left( {cm} \right)\).

• Vì DABH vuông tại H nên BA2 = HB2 + AH2 (định lí Pytago)

Suy ra \(AB = \sqrt {B{H^2} + A{H^2}} = \sqrt {{1^2} + {2^2}} = \sqrt 5 \) (cm)

• Xét DABC vuông tại A có AH là đường cao nên AB2 = BH . BC

Suy ra \(BC = \frac{{A{B^2}}} = \frac{{{{\left( {\sqrt 5 } \right)}^2}}}{1} = 5\left( {cm} \right)\).

c) BH = 4 cm, HC = 9 cm. Tính BC, AB, AH, AC.

• Ta có BC = BH + CH = 4 + 9 = 13 (cm).

• Xét DABC vuông tại A có AH là đường cao nên AB2 = BH . BC (hệ thức lượng trong tam giác vuông)

Suy ra \(AB = \sqrt {BH.BC} = \sqrt {4.13} = 2\sqrt {13} \left( {cm} \right)\)

• Xét DABC vuông tại A có AH là đường cao nên AH2 = BH.CH (hệ thức lượng trong tam giác vuông)

Suy ra \(AH = \sqrt {BH.CH} = \sqrt {4.9} = 6\left( {cm} \right)\).

• Vì DABC vuông tại A nên BC2 = AB2 + AC2 (định lí Pytago)

Suy ra \(AC = \sqrt {B{C^2} - A{B^2}} = \sqrt {{{13}^2} - {{\left( {2\sqrt {13} } \right)}^2}} = 3\sqrt {13} \) (cm).

d) BH = 9 cm, AC = 20 cm. Tính HC, AH, AB, BC.

Xét DABC vuông tại A có AH là đường cao nên

• AC2 = CH . BC (hệ thức lượng trong tam giác vuông)

Û 202 = CH.(CH + BH)

Û 400 = CH.(CH + 9)

Û 400 = CH2 + 9CH

Û CH2 + 9CH – 400 = 0

Û CH = 16 cm (do CH > 0)

• AH2 = BH.CH = 9.16 = 144, suy ra AH = 12 (cm).

Xét DABH vuông tại H có AB2 = AH2 + BH2 (định lí Pytago)

Suy ra \(AB = \sqrt {A{H^2} + B{H^2}} = \sqrt {{{12}^2} + {9^2}} = \sqrt {225} = 15\left( {cm} \right)\)

Xét DABC vuông tại A nên BC2 = AB2 + AC2 (định lí Pytago)

Suy ra \(BC = \sqrt {A{B^2} + A{C^2}} = \sqrt {{{15}^2} + {{20}^2}} = 25\) (cm)

Mở khóa để xem toàn bộ nội dung trả lời

(?)
Bạn đã đạt đến giới hạn của mình. Bằng cách Đăng ký tài khoản, bạn có thể xem toàn bộ nội dung trả lời
Cải thiện điểm số của bạn bằng cách đăng ký tài khoản Lazi.
Xem toàn bộ các câu trả lời, chat trực tiếp 1:1 với đội ngũ Gia sư Lazi bằng cách Đăng nhập tài khoản ngay bây giờ
Tôi đã có tài khoản? Đăng nhập

Bạn hỏi - Lazi trả lời

Bạn muốn biết điều gì?

GỬI CÂU HỎI
Học tập không giới hạn cùng học sinh cả nước và AI, sôi động, tích cực, trải nghiệm
Bài tập liên quan
Bài tập Toán học Lớp 12 mới nhất
Trắc nghiệm Toán học Lớp 12 mới nhất

Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi

Vui Buồn Bình thường

Học ngoại ngữ với Flashcard

×
Trợ lý ảo Trợ lý ảo
×
Gia sư Lazi Gia sư