Từ một điểm A nằm ngoài đường tròn (O; R) kẻ tiếp tuyến AB với (O) (B là tiếp điểm). Đường thẳng đi qua B vuông góc với OA tại H và cắt đường tròn (O) tại C. Vẽ đường kính BD. Đường thẳng AO cắt đường tròn (O) tại hai điểm M và N (M nằm giữa A và N). Chứng minh:
a) CD // OA.
b) AC là tiếp tuyến của đường tròn (O).
c) Cho biết R = 15 cm, BC = 24 cm. Tính AB, OA.
Bằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
a) Ta có: OD = OB và D, B, C Î (O; R)
Suy ra tam giác BCD là tam giác vuông tại C
Þ \(\widehat {DCB} = 90^\circ \) hay CD ^ BC
Mặt khác OH ^ BH (giả thiết)
Þ DC // OH mà H Î OA nên DC // OA
b) Xét ∆OBH và ∆OCH có:
OH: cạnh chung
BO = CO (bán kính của đường tròn tâm O)
\(\widehat {OHB} = \widehat {OHC} = 90^\circ \) (giả thiết)
Do đó ∆OBH = ∆OCH (cạnh huyền - cạnh góc nhọn)
\( \Rightarrow \widehat {BOH} = \widehat {COH}\) (Hai góc tương ứng)
Xét ∆OBA và ∆OCA có:
AO: cạnh chung
BO = CO (bán kính của đường tròn tâm O)
\(\widehat {BOA} = \widehat {COA}\) (cmt)
Do đó ∆ABO = ∆ACO (c.g.c)
Þ \(\widehat {OBA} = \widehat {OCA}\) (Hai góc tương ứng)
Mà \(\widehat {ABO} = 90^\circ \) (AB là tiếp tuyến của (O))
Nên \(\widehat {OCA} = \widehat {OBA} = 90^\circ \) và C Î AC; C Î (O; R)
Suy ra AC là tiếp tuyến của (O).
c) Ta có: \(HB = HC = \frac{2} = \frac{2} = 12\;\left( {cm} \right)\) và R = 15 (cm) nên
Áp dụng hệ thức lượng trong tam giác vuông vào tam giác OAB vuông tại B ta có:
+) \(\frac{1}{{H{B^2}}} = \frac{1}{{B{A^2}}} + \frac{1}{{B{O^2}}} \Rightarrow \frac{1}{{{{12}^2}}} = \frac{1}{{B{A^2}}} + \frac{1}{{{{15}^2}}}\)
\( \Leftrightarrow \frac{1}{{B{A^2}}} = \frac{1}{{{{12}^2}}} - \frac{1}{{{{15}^2}}} = \frac{1}\)
\( \Rightarrow BA = 20\;\left( {cm} \right)\)
+) \(AB\,.\,OB = BH\,.\,OA \Leftrightarrow OA = \frac{{AB\,.\,OB}}\)
\( \Rightarrow OA = \frac{{20\,.\,15}} = 25\;\left( {cm} \right)\)
Tham gia Cộng đồng Lazi trên các mạng xã hội | |
Fanpage: | https://www.fb.com/lazi.vn |
Group: | https://www.fb.com/groups/lazi.vn |
Kênh FB: | https://m.me/j/AbY8WMG2VhCvgIcB |
LaziGo: | https://go.lazi.vn/join/lazigo |
Discord: | https://discord.gg/4vkBe6wJuU |
Youtube: | https://www.youtube.com/@lazi-vn |
Tiktok: | https://www.tiktok.com/@lazi.vn |
Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi
Vui | Buồn | Bình thường |