LH Quảng cáo: lazijsc@gmail.com

Bài tập  /  Bài đang cần trả lời

Cho hai hàm số: y = 2x – 3 và \(y = \frac{{ - 1}}{2}x + 2\) có đồ thị lần lượt là các đường thẳng (d1) và (d2). a) Vẽ trên cùng một hệ trục tọa độ các đường thẳng (d1) và (d2). b) Tìm tọa độ giao điểm hai đường thẳng (d1) và (d2) bằng phép toán. c) Tính góc tạo bởi đường thẳng (d1) và trục Ox.

Cho hai hàm số: y = 2x – 3 và \(y = \frac{{ - 1}}{2}x + 2\) có đồ thị lần lượt là các đường thẳng (d1) và (d2).

a) Vẽ trên cùng một hệ trục tọa độ các đường thẳng (d1) và (d2).

b) Tìm tọa độ giao điểm hai đường thẳng (d1) và (d2) bằng phép toán.

c) Tính góc tạo bởi đường thẳng (d1) và trục Ox.

1 trả lời
Hỏi chi tiết
9
0
0
Phạm Văn Bắc
11/09 22:18:46

a) Đồ thị hàm số y = 2x − 3 cắt trục hoành tại điểm có hoành độ là \(\frac{3}{2}\) và cắt trục tung tại điểm có tung độ là −3.

Vậy đồ thị trên đi qua hai điểm \(\left( {\frac{3}{2};\;0} \right)\) và \(\left( {0;\; - 3} \right)\).

Đồ thị hàm số \(y = \frac{{ - 1}}{2}x + 2\) cắt trục hoành tại điểm có hoành độ là 4 và cắt trục tung tại điểm có tung độ là 2.

Vậy đồ thị trên đi qua hai điểm (4; 0) và (0; 2).

Ta có đồ thị hàm số của hai đường thẳng trên:

b) C là giao điểm của hai đường thẳng trên nên hoành độ giao điểm của C là nghiệm của phương trình:

\(2x - 3 = \frac{{ - 1}}{2}x + 2 \Leftrightarrow x = 2\)

Þ y = 1

Vậy C(2; 1)

c) Ta có A(0; −3) và B(0; 2)

\(AC = \sqrt {{{\left( 2 \right)}^2} + {{\left( {1 + 3} \right)}^2}} = 2\sqrt 5 \)

\(BC = \sqrt {{{\left( 2 \right)}^2} + {{\left( {1 - 2} \right)}^2}} = \sqrt 5 \)

Vì \(2\,.\,\left( { - \frac{1}{2}} \right) = - 1\) nên hai đường thẳng trên vuông góc với nhau.

Vậy diện tích tam giác ABC vuông tại C là:

\({S_{ABC}} = \frac{1}{2}AC\,.\,BC = \frac{1}{2}\,.\,2\sqrt 5 \,.\,\sqrt 5 = 5\)

Mở khóa để xem toàn bộ nội dung trả lời

(?)
Bạn đã đạt đến giới hạn của mình. Bằng cách Đăng ký tài khoản, bạn có thể xem toàn bộ nội dung trả lời
Cải thiện điểm số của bạn bằng cách đăng ký tài khoản Lazi.
Xem toàn bộ các câu trả lời, chat trực tiếp 1:1 với đội ngũ Gia sư Lazi bằng cách Đăng nhập tài khoản ngay bây giờ
Tôi đã có tài khoản? Đăng nhập

Bạn hỏi - Lazi trả lời

Bạn muốn biết điều gì?

GỬI CÂU HỎI
Học tập không giới hạn cùng học sinh cả nước và AI, sôi động, tích cực, trải nghiệm
Bài tập liên quan
Bài tập Toán học Lớp 12 mới nhất

Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi

Vui Buồn Bình thường

Học ngoại ngữ với Flashcard

×
Trợ lý ảo Trợ lý ảo
×
Gia sư Lazi Gia sư