Bài tập  /  Bài đang cần trả lời

Cho đường thẳng (d) có phương trình y = (3m – 2)x + m – 2 (với m là tham số)a) Tìm giá trị của m biết đường thẳng (d) đi qua điểm A(1; 2). Vẽ đồ thị hàm số với m tìm được b) Đường thẳng (d) cắt Ox tại A, Oy tại B. Tìm m để diện tích ∆OAB bằng \(\frac{1}{2}\).

Cho đường thẳng (d) có phương trình y = (3m – 2)x + m – 2 (với m là tham số)a) Tìm giá trị của m biết đường thẳng (d) đi qua điểm A(1; 2). Vẽ đồ thị hàm số với m tìm được

b) Đường thẳng (d) cắt Ox tại A, Oy tại B. Tìm m để diện tích ∆OAB bằng \(\frac{1}{2}\).

1 trả lời
Hỏi chi tiết
10
0
0
Nguyễn Thị Nhài
11/09 22:21:19

a) Đường thẳng (d) đi qua điểm A(1; 2) nên suy ra

2 = (3m – 2) + m – 2

Û 4m − 6 = 0

\( \Leftrightarrow m = \frac{3}{2}\)

Vậy với \(m = \frac{3}{2}\) ta có đường thẳng \(\left( d \right):\;y = \frac{9}{2}x - \frac{1}{2}\)

+) Với x = 0 Þ \(y = - \frac{1}{2}\)

+) Với \(x = \frac{1}{2} \Rightarrow y = \frac{7}{4}\)

Ta có đồ thị hàm số của đường thẳng \(\left( d \right):\;y = \frac{9}{2}x - \frac{1}{2}\)

b) Đường thẳng (d) cắt Ox tại \(A\left( {\frac;\;0} \right)\), Oy tại \(B\left( {0;\;m - 2} \right)\)

Khi đó diện tích tam giác OAB là:

\({S_{OAB}} = \frac{1}{2}OA\,.\,OB = \frac{1}{2}\,.\,\left| {\frac} \right|\,.\,\left| {m - 2} \right|\)

Theo bài ra ta có:

\(\frac{1}{2}\,.\,\left| {\frac} \right|\,.\,\left| {m - 2} \right| = \frac{1}{2}\)

\( \Leftrightarrow \left| {\frac} \right|\,.\,\left| {m - 2} \right| = 1\)

\( \Leftrightarrow {\left( {m - 2} \right)^2} = \left| {3m - 2} \right|\)

\( \Rightarrow \left[ \begin{array}{l}{m^2} - 4m + 4 = 3m - 2\\{m^2} - 4m + 4 = 2 - 3m\end{array} \right.\)

\( \Leftrightarrow \left[ \begin{array}{l}{m^2} - 7m + 6 = 0\\{m^2} - m + 2 = 0\end{array} \right.\)

\( \Leftrightarrow \left[ \begin{array}{l}\left[ \begin{array}{l}m = 1\\m = 6\end{array} \right.\\VN\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}m = 1\\m = 6\end{array} \right.\)

Vậy m = 1 và m = 6 là các giá trị của m thỏa mãn.

Mở khóa để xem toàn bộ nội dung trả lời

(?)
Bạn đã đạt đến giới hạn của mình. Bằng cách Đăng ký tài khoản, bạn có thể xem toàn bộ nội dung trả lời
Cải thiện điểm số của bạn bằng cách đăng ký tài khoản Lazi.
Xem toàn bộ các câu trả lời, chat trực tiếp 1:1 với đội ngũ Gia sư Lazi bằng cách Đăng nhập tài khoản ngay bây giờ
Tôi đã có tài khoản? Đăng nhập

Bạn hỏi - Lazi trả lời

Bạn muốn biết điều gì?

GỬI CÂU HỎI
Học tập không giới hạn cùng học sinh cả nước và AI, sôi động, tích cực, trải nghiệm
Bài tập liên quan

Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi

Vui Buồn Bình thường

Học ngoại ngữ với Flashcard

×
Trợ lý ảo Trợ lý ảo
×
Gia sư Lazi Gia sư