Cho đồ thị (d): y = (3m − 2)x + m − 2 với m là tham số
a) Tìm điểm cố định mà d luôn đi qua mọi giá trị của m
b) Tìm m để khoảng cách từ gốc tọa độ đến d lớn nhất
Bằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
a) Gọi M(x; y) là điểm cố định mà (d) luôn đi qua
Ta có M(x; y) thuộc (d) nên
y = (3m − 2)x + m − 2
Û 3mx − 2x + m − 2 − y = 0
Û m(3x + 1) − (2x + y + 2) = 0
\( \Leftrightarrow \left\{ \begin{array}{l}3x + 1 = 0\\2x + y + 2 = 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x = - \frac{1}{3}\\y = - \frac{4}{3}\end{array} \right.\)
Vậy \(M\left( {\frac{{ - 1}}{3};\;\frac{2}{3}} \right)\) là điểm cố định mà (d) luôn đi qua với mọi giá trị của m.
b) (d): y = (3m − 2)x + m − 2
Û (3m − 2)x − y + m − 2 = 0
Khoảng cách từ gốc tọa độ đến d là:
\(d = \frac{{\left| {m - 2} \right|}}{{\sqrt {{{\left( {3m - 2} \right)}^2} + {{\left( { - 1} \right)}^2}} }} = \frac{{\left| {m - 2} \right|}}{{\sqrt {9{m^2} - 12m + 5} }}\)
Vậy để d lớn nhất thì m = 1 và khi đó \(d = \frac{1}{{\sqrt 2 }}\)
Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi
Vui | Buồn | Bình thường |