Cho tam giác ABC vuông tại C (AC < BC), đường cao CHK và đường phân giác trong BD (H Î AB, D Î AC). Qua D kẻ đường thẳng vuông góc với AC cắt CH, AB lần lượt tại E và F.
a) Chứng minh bốn điểm C, D, H, F cùng thuộc một đường tròn.
b) Chứng minh AD.AC = DE.AB
Bằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
a) Ta có :
DF vuông CD (gt) Þ \(\widehat {FDC} = 90^\circ \)
CH vuông HF (gt) Þ \(\widehat {CHF} = 90^\circ \)
\( \Rightarrow \widehat {FDC} = \widehat {CHF} = 90^\circ \)
Mà 2 góc này ở 2 đỉnh kề nhau cùng nhìn cạnh CF
Suy ra CDHF là tứ giác nội tiếp.
Vậy bốn điểm C, D, H, F cùng thuộc một đường tròn.
b) Ta có: \(\widehat {ECD} = \widehat {ABC}\) (cùng phụ góc \(\widehat {HCB}\))
Xét ∆ECD và ∆ABC có:
\(\widehat {ECD} = \widehat {ABC}\) (cmt )
\(\widehat {EDC} = \widehat {ACB} = 90^\circ \)
Suy ra ∆ABC ᔕ ∆ECD (g.g)
\( \Rightarrow \frac = \frac\) (2 cạnh tương ứng tỉ lệ )
Mà BD là đường phân giác của \(\widehat {ABC}\) (gt)
\( \Rightarrow \frac = \frac\)
Suy ra AD.AC = DE.AB (đpcm)
Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi
Vui | Buồn | Bình thường |