Cho A là giao điểm của hai đường thẳng y = x – 1 và y = –2x + 8. Chứng minh rằng điểm A thuộc đồ thị hàm số \(y = \frac{2}{9}{x^2}.\)
Bằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
Gọi A(x0; y0) là giao điểm của hai đường thẳng y = x – 1 và y = –2x + 8.
Do đó ta có:
⦁ y0 = x0 – 1;
⦁ y0 = –2x0 + 8.
Suy ra: x0 – 1 = –2x0 + 8.
3x0 = 9
x0 = 3.
Thay x0 = 3 vào hàm số \(y = \frac{2}{9}{x^2},\) ta được: \({y_0} = \frac{2}{9} \cdot {3^2} = 2.\)
Suy ra A(3; 2).
Mặt khác, thay x0 = 3 và y0 = 2 vào hàm số \(y = \frac{2}{9}{x^2},\) ta có \(2 = \frac{2}{9} \cdot {3^2}\) (luôn đúng), nên điểm A thuộc đồ thị hàm số \(y = \frac{2}{9}{x^2}.\)
Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi
Vui | Buồn | Bình thường |