Cho đường tròn (O; R) và dây cung \(MN = R\sqrt 3 .\) Tính số đo của mỗi cung MN⏜ (cung lớn và cung nhỏ).
Bằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
Kẻ OH ⊥ MN tại H.
Xét ∆OMN cân tại O (do OM = ON = R) có OH là đường cao nên đồng thời là đường trung tuyến, hay H là trung điểm của MN.
Do đó \(HM = HN = \frac{2} = \frac{{R\sqrt 3 }}{2}.\)
Xét ∆HMO vuông tại H, có:
\(\cos \widehat {HMO} = \frac = \frac{{\frac{{R\sqrt 3 }}{2}}}{R} = \frac{{\sqrt 3 }}{2},\) nên \(\widehat {HMO} = 30^\circ \)
Mà ∆OMN cân tại O nên ta có:
\(\widehat {MON} = 180^\circ - 2\widehat {HMO} = 180^\circ - 2 \cdot 30^\circ = 120^\circ .\)
Suy ra số đo cung nhỏ MN là 120°, số đo cung lớn MN là 360° – 120° = 240°.
Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi
Vui | Buồn | Bình thường |