Bài tập  /  Bài đang cần trả lời

Không giải phương trình, hãy tính tổng và tích các nghiệm (nếu có) của mỗi phương trình: a) 5x2 – 9x + 1 = 0; b) 9x2 – 12x + 4 = 0; c) 4x2 + 9x + 12 = 0; d) \[5{x^2} - 2\sqrt 3 x - 3 = 0.\]

Không giải phương trình, hãy tính tổng và tích các nghiệm (nếu có) của mỗi phương trình:

a) 5x2 – 9x + 1 = 0;

b) 9x2 – 12x + 4 = 0;

c) 4x2 + 9x + 12 = 0;

d) \[5{x^2} - 2\sqrt 3 x - 3 = 0.\]

1 Xem trả lời
Hỏi chi tiết
12
0
0
Đặng Bảo Trâm
11/09/2024 23:12:07

a) Xét phương trình 5x2 – 9x + 1 = 0.

Ta có ∆ = (‒9)2 ‒ 4.5.1 = 81 ‒ 20 = 61 > 0 nên phương trình có hai nghiệm phân biệt x1, x2.

Theo định lí Viète, ta có: \({x_1} + {x_2} = - \frac{b}{a} = - \frac{{ - 9}}{5} = \frac{9}{5};\,\,{x_1}{x_2} = \frac{c}{a} = \frac{1}{5}.\)

b) Xét phương trình 9x2 – 12x + 4 = 0.

Ta có ∆’ = (‒6)2 ‒ 9.4 = 36 ‒ 36 = 0 nên phương trình có nghiệm kép.

Theo định lí Viète, ta có: \({x_1} + {x_2} = - \frac{b}{a} = - \frac{{ - 12}}{9} = \frac{4}{3};\,\,{x_1}{x_2} = \frac{c}{a} = \frac{4}{9}.\)

c) Xét phương trình 4x2 + 9x + 12 = 0.

Ta có ∆ = 92 ‒ 4.4.12 = 81 ‒ 192 = – 111 < 0 nên phương trình vô nghiệm.

d) Xét phương trình \[5{x^2} - 2\sqrt 3 x - 3 = 0.\]

Ta có \(\Delta ' = {\left( { - \sqrt 3 } \right)^2} - 5 \cdot \left( { - 3} \right) = 3 + 15 = 18 > 0\) nên phương trình có hai nghiệm phân biệt x1, x2.

Theo định lí Viète, ta có: \({x_1} + {x_2} = - \frac{b}{a} = - \frac{{ - 2\sqrt 3 }}{5} = \frac{{2\sqrt 3 }}{5};\,\,\,{x_1}{x_2} = \frac{c}{a} = \frac{{ - 3}}{5}.\)

Mở khóa để xem toàn bộ nội dung trả lời

(?)
Bạn đã đạt đến giới hạn của mình. Bằng cách Đăng ký tài khoản, bạn có thể xem toàn bộ nội dung trả lời
Cải thiện điểm số của bạn bằng cách đăng ký tài khoản Lazi.
Xem toàn bộ các câu trả lời, chat trực tiếp 1:1 với đội ngũ Gia sư Lazi bằng cách Đăng nhập tài khoản ngay bây giờ
Tôi đã có tài khoản? Đăng nhập

Bạn hỏi - Lazi trả lời

Bạn muốn biết điều gì?

GỬI CÂU HỎI
Học tập không giới hạn cùng học sinh cả nước và AI, sôi động, tích cực, trải nghiệm
Câu hỏi liên quan

Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi

Vui Buồn Bình thường
×
Trợ lý ảo Trợ lý ảo
×
Đấu trường tri thức | Lazi Quiz Challenge +500k
Gửi câu hỏi
×