Cho hình thang ABCD (AB // CD) nội tiếp đường tròn (O; R). Chứng minh ABCD là hình thang cân.
Bằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
Qua điểm O vẽ đường thẳng d vuông góc với AB tại M và CD tại N.
Ta có OA = OB = OC = OD = R, suy ra đường thẳng d là đường trung trực của AB và CD.
Tam giác AOB cân tại O có OM là đường trung trực nên OM cũng là đường phân giác, suy ra \(\widehat {AOM} = \widehat {BOM}.\)
Tương tự, \(\widehat {DON} = \widehat {CON}.\)
Khi đó, ta có \(\widehat {AOM} + \widehat {AOD} + \widehat {DON} = \widehat {BOM} + \widehat {BOC} + \widehat {CON} = 180^\circ \)
Suy ra \(\widehat {AOD} = \widehat {BOC}.\)
Xét ∆AOD và ∆BOC có:
OA = OB, \(\widehat {AOD} = \widehat {BOC},\) OD = OC.
Do đó ∆AOD = ∆BOC (c.g.c).
Suy ra \(\widehat {ODA} = \widehat {OCB}\) (hai góc tương ứng).
Lại có \(\widehat {ODC} = \widehat {OCD}\) (vì ∆ODC cân tại O do OD = OC).
Khi đó, \(\widehat {ODA} + \widehat {ODC} = \widehat {OCB} + \widehat {OCD}\) hay \(\widehat {ADC} = \widehat {BCD}.\)
Hình thang ABCD có \(\widehat {ADC} = \widehat {BCD}\) nên ABCD là hình thang cân.
Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi
Vui | Buồn | Bình thường |