Cho tứ giác ABCD nội tiếp đường tròn đường kính AD. Hai đường chéo AC và BD cắt nhau tại E. Vẽ EF vuông góc với AD tại F. Chứng minh ABEF và DCEF là hai tứ giác nội tiếp.
Bằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
• Ta có \(\widehat {ABD} = 90^\circ \) (góc nội tiếp chắn nửa đường tròn đường kính AD) hay \(\widehat {ABE} = 90^\circ .\)
Ta cũng có \(\widehat {AFE} = 90^\circ \) do EF ⊥ AD.
Tam giác ABE vuông tại B và tam giác AFE vuông tại F cùng nội tiếp trong đường tròn đường kính AE.
Do đó, tứ giác ABEF nội tiếp đường tròn đường kính AE.
• Ta có \(\widehat {ECD} = \widehat {ACD} = 90^\circ \) (góc nội tiếp chắn nửa đường tròn đường kính AD), \(\widehat {EFD} = 90^\circ \) (do EF ⊥ AD xc).
Tam giác ECD vuông tại C và tam giác EFD vuông tại F cùng nội tiếp trong đường tròn đường kính ED.
Do đó, tứ giác DCEF nội tiếp đường tròn đường kính ED.
Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi
Vui | Buồn | Bình thường |