Bài tập  /  Bài đang cần trả lời

Cho tam giác \(ABC\) có \(CA > CB\) và nội tiếp đường tròn tâm \(O\) đường kính \(AB.\) Các tiếp tuyến với đường tròn \(\left( O \right)\) tại \(A\) và \(C\) cắt nhau tại \(M.\) Gọi \(H\) là giao điểm của \(MO\) và \(AC.\) 1) Chứng minh rằng tứ giác \(OCMA\) nội tiếp và \(HA = HC.\) 2) Vẽ \(CK\) vuông góc với \(AB\,\,\left( {K \in AB} \right)\) và \(HE\) vuông góc với \(CK\,\,\left( {E \in CK} \right).\) Chứng minh rằng \(HE \cdot CM = HM \cdot CH\) và tâm đường tròn ngoại tiếp tam giác \(OKH\) ...

Cho tam giác \(ABC\) có \(CA > CB\) và nội tiếp đường tròn tâm \(O\) đường kính \(AB.\) Các tiếp tuyến với đường tròn \(\left( O \right)\) tại \(A\) và \(C\) cắt nhau tại \(M.\) Gọi \(H\) là giao điểm của \(MO\) và \(AC.\)

1) Chứng minh rằng tứ giác \(OCMA\) nội tiếp và \(HA = HC.\)

2) Vẽ \(CK\) vuông góc với \(AB\,\,\left( {K \in AB} \right)\) và \(HE\) vuông góc với \(CK\,\,\left( {E \in CK} \right).\) Chứng minh rằng \(HE \cdot CM = HM \cdot CH\) và tâm đường tròn ngoại tiếp tam giác \(OKH\) nằm trên đường thẳng \(OC.\)

3) Chứng minh rằng ba điểm \(M,\,\,E,\,\,B\) thẳng hàng.
1 Xem trả lời
Hỏi chi tiết
16
0
0

1) ⦁ Chứng minh tứ giác \(OCMA\) nội tiếp

Do \[MA,{\rm{ }}MC\] là tiếp tuyến của đường tròn \(\left( O \right)\) nên \(\widehat {MAO} = \widehat {MCO} = 90^\circ .\)

Do đó hai điểm \(A,\,\,C\) cùng nằm trên đường tròn đường kính \(MO.\)

Vậy tứ giác \[OCMA\] nội tiếp đường tròn đường kính \(MO.\)

⦁ Chứng minh \(HA = HC\)

Ta có \(MA = MC\) (tính chất hai tiếp tuyến cắt nhau) và \(OA = OC\) nên \(MO\) là đường trung trực của \[AC.\] Do đó \(MO \bot AC\) tại trung điểm \(H\) của \(AC.\)

Suy ra \(HA = HC.\)

2) ⦁ Chứng minh \(HE \cdot CM = HM \cdot CH\)

Xét \(\Delta ACK\) có \(HE\,{\rm{//}}\,AB\) (cùng vuông góc với \(CK)\) và \(H\) là trung điểm của \(AC\) nên \(HE\) là đường trung bình của tam giác, do đó \(HE = \frac{1}{2}AK\) hay \(AK = 2HE.\)

Do \[OCMA\] là tứ giác nội tiếp nên \(\widehat {OMC} = \widehat {OAC}\) (hai góc nội tiếp cùng chắn cung \(OC)\) hay \(\widehat {HMC} = \widehat {KAC}.\)

Xét \(\Delta MHC\) và \(\Delta AKC\) có: \[\widehat {MHC} = \widehat {AKC} = 90^\circ \] và \(\widehat {HMC} = \widehat {KAC}.\)

Do đó  (g.g), suy ra \(\frac = \frac\) hay \[MH \cdot AC = MC \cdot AK.\]

Suy ra \[MH \cdot 2HC = MC \cdot 2HE\] hay \[MH \cdot HC = MC \cdot HE.\]

⦁ Chứng minh tâm đường tròn ngoại tiếp tam giác \(OKH\) nằm trên đường thẳng \(OC\)

Ta có \(\widehat {CHO} = \widehat {OKC} = 90^\circ \) nên hai điểm \(H,\,\,K\) cùng nằm trên đường tròn đường kính \(OC\)

Vậy tứ giác \[HOKC\] nội tiếp đường tròn đường kính \(OC\) nên tâm đường tròn ngoại tiếp tam giác \(OKH\) nằm trên đường thẳng \(OC.\)

3) Giả sử \(MB\) cắt \(CK\) tại \(E',\) cắt đường tròn\(\left( O \right)\) tại điểm thứ hai là \(F.\) Ta đi chứng minh \(E'\) là trung điểm của \(CK.\)

Ta có \(\widehat {MCF} + \widehat {FCO} = 90^\circ \) nên \(\widehat {MCF} = 90^\circ  - \widehat {FCO}.\,\,\left( 1 \right)\)

Xét \(\Delta OCF\) cân tại \(O\) (do \(OC = OF)\) nên

\(\widehat {FCO} = \widehat {CFO} = \frac{{180^\circ  - \widehat {COF}}}{2} = 90^\circ  - \frac{1}{2}\widehat {COF}.\)

Mà \(\widehat {CBF} = \frac{1}{2}\widehat {COF}\) (góc nội tiếp và góc ở tâm cùng chắn cung \(CF)\) nên \(\widehat {FCO} = 90^\circ  - \widehat {CBF}\) hay \[\widehat {CBF} = 90^\circ  - \widehat {FCO}.\,\,\left( 2 \right)\]

Từ \(\left( 1 \right)\) và \(\left( 2 \right)\) suy ra \(\widehat {MCF} = \widehat {CBF}.\)

Xét \(\Delta MCF\) và \(\Delta MBC\) có: \(\widehat {CMB}\) là góc chung, \(\widehat {MCF} = \widehat {MBC}\)

Do đó  (g.g), suy ra \(\frac = \frac,\) hay \(M{C^2} = MF \cdot MB.\)

Xét \(\Delta MCH\) vuông tại \(H,\) ta có \(\cos \widehat {CMH} = \frac.\)

Xét \(\Delta MCO\) vuông tại \(C,\) ta có \(\cos \widehat {CMO} = \frac.\)

Suy ra \(\frac = \frac,\) hay \[M{C^2} = MH \cdot MO.\]

Do đó \(MH \cdot MO = MF \cdot MB\) nên \(\frac = \frac.\)

Xét \(\Delta MFH\) và \(\Delta MOB\) có: \(\widehat {OMB}\) là góc chung và \(\frac = \frac.\)

Do đó  (c.g.c), suy ra \[\widehat {MHF} = \widehat {MBO}.\]

Mà \(\widehat {MHF} + \widehat {FHO} = 180^\circ \) (kề bù) nên \(\widehat {FHO} + \widehat {FBO} = 180^\circ .\)

Chứng minh bổ đề: Cho tứ giác \(ABCD\) có \(\widehat {ADC} + \widehat {ABC} = 180^\circ .\) Chứng minh tứ giác \(ABCD\) nội tiếp.

• Giả sử \(\Delta ABC\) có đường tròn ngoại tiếp tâm \(O\) và đường kính \(AK\) nên tứ giác \(ABCK\) nội tiếp, suy ra \(\widehat {ABC} + \widehat {AKC} = 180^\circ \) (hai góc đối nhau của tứ giác nội tiếp)

Mà \(\widehat {ADC} + \widehat {ABC} = 180^\circ \) (giả thiết) nên \(\widehat {ADC} = \widehat {AKC}\) (cùng bù với \[\widehat {ABC})\] \(\left( 3 \right)\)

⦁ Gọi \(F\) là giao điểm của \(AK\) và \(CD,\) \(F\) nằm trong đường tròn \(\left( O \right).\)

Xét \(\Delta AFD\) và \(\Delta CFK\) có: \(\widehat {AFD} = \widehat {CFK}\) (đối đỉnh) và \(\widehat {ADF} = \widehat {CKF}\) (chứng minh trên)

Do đó  suy ra \(\frac = \frac\) nên \(\frac = \frac.\)

Xét \(\Delta DFK\) và \(\Delta AFC\) có: \(\frac = \frac\) và \[\widehat {DFK} = \widehat {AFC}\] (đối đỉnh)

Do đó  suy ra \(\widehat {FDK} = \widehat {FAC}.\,\,\,\left( 4 \right)\)

⦁ Ta có \(\widehat {ACK}\) là góc nội tiếp chắn nửa đường tròn nên \(\widehat {ACK} = 90^\circ ,\) do đó \(\Delta ACK\) vuông tại \(C,\) suy ra \(\widehat {FAC} + \widehat {AKC} = 90^\circ .\,\,\,\left( 5 \right)\)

Từ \(\left( 3 \right),\,\,\left( 4 \right),\,\,\left( 5 \right)\) suy ra \(\widehat {ADC} + \widehat {FDK} = 90^\circ \) hay \(\widehat {ADK} = 90^\circ .\)

Khi đó \(\Delta ADK\) vuông tại \(D\) nên điểm \(D\) nằm trên đường tròn đường kính \(AK.\)

Suy ra tứ giác \(ABCD\) nội tiếp đường tròn \(\left( O \right)\) đường kính

Áp dụng bổ đề trên cho tứ giác \(OHFB\) có \(\widehat {FHO} + \widehat {FBO} = 180^\circ ,\) suy ra tứ giác \(OHFB\) nội tiếp đường tròn, do đó \(\widehat {HFB} + \widehat {HOB} = 180^\circ .\)

Mà \(\widehat {HOB} + \widehat {HOA} = 180^\circ \) nên \(\widehat {HFB} = \widehat {HOA}.\)

Lại có \(\widehat {HOA} = \widehat {ACK}\) (cùng phụ với \(\widehat {KAC})\) nên \(\widehat {HFB} = \widehat {ACK}\) hay \(\widehat {HFE'} = \widehat {HCE'}.\)

Chứng minh bổ đề: Cho tứ giác \(ABCD\) có \(\widehat {ACB} = \widehat {ADB}.\) Chứng minh tứ giác \(ABCD\) là tứ giác nội tiếp.

• Giả sử \(\Delta ABC\) có đường tròn ngoại tiếp tâm \(O\) và đường kính \(AK\) nên tứ giác \(ABCK\) nội tiếp, suy ra \(\widehat {ACB} = \widehat {AKB}\) (hai góc nội tiếp cùng chắn cung \(AB).\)

Mà \(\widehat {ACB} = \widehat {ADB}\) (giả thiết) nên \(\widehat {ADB} = \widehat {AKB}.\) \(\left( 6 \right)\)

⦁ Gọi \(F\) là giao điểm của \(AK\) và \(BD,\) \(F\) nằm trong đường tròn \(\left( O \right).\)

Xét \(\Delta AFD\) và \(\Delta BFK\) có: \(\widehat {AFD} = \widehat {BFK}\) (đối đỉnh) và \(\widehat {ADF} = \widehat {BKF}\) (chứng minh trên)

Do đó  suy ra \(\frac = \frac\) nên \(\frac = \frac.\)

Xét \(\Delta DFK\) và \(\Delta AFB\) có: \(\frac = \frac\) và \[\widehat {DFK} = \widehat {AFB}\] (đối đỉnh)

Do đó  suy ra \(\widehat {FDK} = \widehat {FAB}.\,\,\,\left( 7 \right)\)

⦁ Ta có \(\widehat {ABK}\) là góc nội tiếp chắn nửa đường tròn nên \(\widehat {ABK} = 90^\circ ,\) do đó \(\Delta ABK\) vuông tại \(B,\) suy ra \(\widehat {FAB} + \widehat {AKB} = 90^\circ .\,\,\,\left( 8 \right)\)

Từ \(\left( 6 \right),\,\,\left( 7 \right),\,\,\left( 8 \right)\) suy ra \(\widehat {ADB} + \widehat {FDK} = 90^\circ \) hay \(\widehat {ADK} = 90^\circ .\)

Khi đó \(\Delta ADK\) vuông tại \(D\) nên điểm \(D\) nằm trên đường tròn đường kính \(AK.\)

Suy ra tứ giác \(ABCD\) nội tiếp đường tròn \(\left( O \right)\) đường kính \(AK.\)

Áp dụng bổ đề trên cho tứ giác \(HFCE'\) có \(\widehat {HFE'} = \widehat {HCE'},\) suy ra tứ giác \(HFCE'\) nội tiếp đường tròn, do đó \[\widehat {E'HC} = \widehat {E'FC}\] (hai góc nội tiếp cùng chắn cung \(E'C)\)

Mà \[\widehat {E'FC} = \widehat {BFC} = \widehat {BAC}\] (hai góc nội tiếp cùng chắn cung \(BC\) của đường tròn \(\left( O \right))\) nên \(\widehat {E'HC} = \widehat {BAC},\) lại có hai góc này ở vị trí đồng vị nên \(HE'{\rm{ // }}AB.\)

Xét \(\Delta ACK\) có \(HE'{\rm{ // }}AB\) và \(H\) là trung điểm \(AC\) nên \[HE'\] là đường trung bình của tam giác, do đó \(E'\) là trung điểm \(CK\)

Như vậy, điểm \(E\) và điểm \[E'\] trùng nhau.

Vậy ba điểm \(M,\,\,E,\,\,B\) thẳng hàng.

Mở khóa để xem toàn bộ nội dung trả lời

(?)
Bạn đã đạt đến giới hạn của mình. Bằng cách Đăng ký tài khoản, bạn có thể xem toàn bộ nội dung trả lời
Cải thiện điểm số của bạn bằng cách đăng ký tài khoản Lazi.
Xem toàn bộ các câu trả lời, chat trực tiếp 1:1 với đội ngũ Gia sư Lazi bằng cách Đăng nhập tài khoản ngay bây giờ
Tôi đã có tài khoản? Đăng nhập

Bạn hỏi - Lazi trả lời

Bạn muốn biết điều gì?

GỬI CÂU HỎI
Học tập không giới hạn cùng học sinh cả nước và AI, sôi động, tích cực, trải nghiệm

Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi

Vui Buồn Bình thường
×
Trợ lý ảo Trợ lý ảo
×
Đấu trường tri thức | Lazi Quiz Challenge +500k
Gửi câu hỏi
×