Bài tập  /  Bài đang cần trả lời

Hai thùng chứa nước hình trụ đều được gắn một vòi chảy ở đáy thùng. Ban đầu chiều cao mực nước ở thùng thứ nhất hơn thùng thứ hai \(0,2\,\,{\rm{m}}\,{\rm{,}}\) để vệ sinh hai thùng này bạn Hân cần mở vòi cho nước chảy hết ra ngoài. Bạn Hân bắt đầu mở vòi cho thùng thứ nhất chảy từ 8 giờ sáng và sau đó 3 phút bắt đầu mở vòi cho thùng thứ hai chảy. Khi quan sát quá trình chảy của hai thùng, Hân thấy rằng: ⦁ Tại thời điểm 8 giờ 04 phút thì chiều cao mực nước hai thùng bằng nhau. ⦁ Tại thời điểm 8 ...

Hai thùng chứa nước hình trụ đều được gắn một vòi chảy ở đáy thùng. Ban đầu chiều cao mực nước ở thùng thứ nhất hơn thùng thứ hai \(0,2\,\,{\rm{m}}\,{\rm{,}}\) để vệ sinh hai thùng này bạn Hân cần mở vòi cho nước chảy hết ra ngoài. Bạn Hân bắt đầu mở vòi cho thùng thứ nhất chảy từ 8 giờ sáng và sau đó 3 phút bắt đầu mở vòi cho thùng thứ hai chảy. Khi quan sát quá trình chảy của hai thùng, Hân thấy rằng:

⦁ Tại thời điểm 8 giờ 04 phút thì chiều cao mực nước hai thùng bằng nhau.

⦁ Tại thời điểm 8 giờ 08 phút thì thùng thứ hai vừa chảy hết nước và chiều cao mực nước còn lại ở thùng thứ nhất là \(0,4{\rm{\;m}}\).

Tìm chiều cao mực nước ban đầu ở mỗi thùng. Biết rằng tốc độ chảy ở mỗi vòi là không đổi.

1 Xem trả lời
Hỏi chi tiết
78
0
0
Phạm Văn Phú
12/09 10:01:01

Gọi \(x\,;\,\,x - 0,2\,\,\left( {\rm{m}} \right)\) lần lượt là chiều cao mực nước ban đầu ở thùng thứ nhất và thùng thứ hai \(\left( {x > 0,2} \right)\).

Thùng thứ hai chảy trong 5 phút thì hết nước nên trong 1 phút thùng thứ hai chảy được \(\frac{1}{5}\) thùng.

– Lúc 8 giờ 8 phút, vòi thứ nhất chảy được 1 phút nên chảy được \(\frac{1}{5}\) thùng.

– Lúc 8 giờ 4 phút, vòi thứ hai chảy được 1 phút nên chảy được \(\frac{1}{5}\) thùng.

Khi đó, chiều cao còn lại là \(\frac{4}{5}\) thùng.

Chiều cao thùng thứ hai còn lại là \(\frac{4}{5}\left( {x - 0,2} \right)\), chính là chiều cao của thùng thứ nhất.

Thùng thứ nhất chảy được: \(\frac{1}{5}x + \frac{4}.\)

Mỗi phút thùng thứ nhất chảy được \(\left( {\frac{1}{5}x + \frac{4}} \right):4 = \frac{1}x + \frac{4}.\)

– Lúc 8 giờ 8 phút, thùng thứ nhất chảy được 8 phút.

Khi đó, thùng thứ nhất chảy được: \(\frac{8}x + \frac{8}\,\,\left( {\rm{m}} \right){\rm{.}}\)

Theo đề bài, ta có phương trình \(\frac{3}{5}x - \frac{8} = 0,4\) hay \(15x - 8 = 10\). Do đó \(x = 1,2\,\,\left( {{\rm{TM}}} \right){\rm{.}}\)

Vậy chiều cao mực nước ban đầu của thùng thứ nhất là \(1,2{\rm{\;m}}\); thùng thứ hai là \[1{\rm{ m}}.\]\({\rm{\;}}\)

Mở khóa để xem toàn bộ nội dung trả lời

(?)
Bạn đã đạt đến giới hạn của mình. Bằng cách Đăng ký tài khoản, bạn có thể xem toàn bộ nội dung trả lời
Cải thiện điểm số của bạn bằng cách đăng ký tài khoản Lazi.
Xem toàn bộ các câu trả lời, chat trực tiếp 1:1 với đội ngũ Gia sư Lazi bằng cách Đăng nhập tài khoản ngay bây giờ
Tôi đã có tài khoản? Đăng nhập

Bạn hỏi - Lazi trả lời

Bạn muốn biết điều gì?

GỬI CÂU HỎI
Học tập không giới hạn cùng học sinh cả nước và AI, sôi động, tích cực, trải nghiệm

Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi

Vui Buồn Bình thường
×
Trợ lý ảo Trợ lý ảo
×
Đấu trường tri thức | Lazi Quiz Challenge +500k
Gửi câu hỏi
×