1) Trong mặt phẳng tọa độ \[Oxy,\] cho hai đường thẳng \(\left( d \right):y = \left( {{m^2} - 3} \right)x + 3\) và \(\left( {d'} \right):y = 6x + m.\) Tìm tất cả các giá trị của \[m\] để hai đường thẳng trên song song với nhau.
2) Giải hệ phương trình \(\left\{ \begin{array}{l}x + 5y = - 7\\x - 4y = 11.\end{array} \right.\)Bằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
1) Để \[\left( d \right)\,{\rm{//}}\,\left( {d'} \right)\] thì \(\left\{ \begin{array}{l}{m^2} - 3 = 6\\m \ne 3\end{array} \right.\) hay\(\left\{ \begin{array}{l}{m^2} = 9\\m \ne 3\end{array} \right.\) suy ra \(m = - 3.\)
Vậy với \(m = - 3\) thì hai đường thẳng đã cho song song với nhau.
2) Giải hệ phương trình \(\left\{ \begin{array}{l}x + 5y = - 7\\x - 4y = 11.\end{array} \right.\)
Trừ từng vế hai phương trình thứ nhất và thứ hai của hệ phương trình, ta được:
\(9y = - 18,\) suy ra \(y = - 2.\)
Thay \(y = - 2\) vào phương trình \(x + 5y = - 7,\) ta được:
\(x + 5 \cdot \left( { - 2} \right) = - 7,\) suy ra \(x = 3.\)
Vậy hệ phương trình có nghiệm duy nhất là \[\left( {x;{\rm{ }}y} \right) = \left( {3;\,\, - 2} \right).\]
Tham gia Cộng đồng Lazi trên các mạng xã hội | |
Fanpage: | https://www.fb.com/lazi.vn |
Group: | https://www.fb.com/groups/lazi.vn |
Kênh FB: | https://m.me/j/AbY8WMG2VhCvgIcB |
LaziGo: | https://go.lazi.vn/join/lazigo |
Discord: | https://discord.gg/4vkBe6wJuU |
Youtube: | https://www.youtube.com/@lazi-vn |
Tiktok: | https://www.tiktok.com/@lazi.vn |
Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi
Vui | Buồn | Bình thường |