Bằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
Hướng dẫn giải
Phương trình chính tắc của (H) có dạng: \(\frac{{{x^2}}}{{{a^2}}} - \frac{{{y^2}}}{{{b^2}}} = 1\) (trong đó a, b > 0)
Do (H) có một tiêu điểm là F2(5; 0) nên ta có:
c = 5 ⇒ b2 + a2 = c2 = 25 ⇔ a2 = 25 – b2
Vì (H) đi qua điểm \(M\left( {3\sqrt 2 ;4} \right)\)nên ta có
\(\frac{{{{\left( {3\sqrt 2 } \right)}^2}}}{{{a^2}}} - \frac{{{4^2}}}{{{b^2}}} = 1 \Leftrightarrow \frac{{{a^2}}} - \frac{{{b^2}}} = 1\) (1)
Đặt t = b2 (t > 0) ⇒ a2 = 25 – t. Thay vào (1) ta được
\(\frac - \frac{t} = 1\)
⇒ 18t – 16(25 – t) = (25 – t)t
⇔ 18t – 400 + 16t = 25t – t2
⇔ t2 + 9t – 400 = 0
⇔ t = 16 (thỏa mãn) hoặc t = –25 (không thỏa mãn)
Do đó, b2 = t = 16, a2 = 25 – t = 9.
Vậy phương trình chính tắc của (H) là: \(\frac{{{x^2}}}{9} - \frac{{{y^2}}} = 1\).
Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi
Vui | Buồn | Bình thường |