Bằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
Hướng dẫn giải
Elip \(\frac{{{x^2}}} + \frac{{{y^2}}}{9} = 1\) có a2 = 25, b2 = 9, c = \(\sqrt {{a^2} - {b^2}} = \sqrt {25 - 9} = 4\) nên hai tiêu điểm là F1(–4; 0), F2(4; 0).
Do M nhìn hai tiêu điểm dưới một góc vuông nên M nằm trên đường tròn (C) tâm O đường kính F1F2 = 2.4 = 8 nên bán kính là R = 4.
Phương trình đường tròn (C) là:
x2 + y2 = 42 hay x2 + y2 = 16.
Khi đó toạ độ của M là nghiệm của hệ phương trình
\(\left\{ {\begin{array}{*{20}{c}}{{x^2} + {y^2} = 16}\\{\frac{{{x^2}}} + \frac{{{y^2}}}{9} = 1}\end{array}} \right. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{{y^2} = 16 - {x^2}}\\{\frac{{{x^2}}} + \frac}{9} = 1}\end{array}} \right.\)
\( \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{{y^2} = 16 - {x^2}}\\{9{x^2} + 400 - 25{x^2} = 225}\end{array}} \right.\)
\( \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{{y^2} = 16 - {x^2}}\\{16{x^2} = 175}\end{array}} \right. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{{y^2} = 16 - \frac}\\{{x^2} = \frac}\end{array}} \right.\)
\( \Leftrightarrow \left\{ \begin{array}{l}x = \pm \frac{{5\sqrt 7 }}{4}\\y = \pm \frac{9}{4}\end{array} \right.\).
Vậy ta tìm được bốn điểm M thoả mãn là \(M\left( { \pm \frac{{5\sqrt 7 }}{4}; \pm \frac{9}{4}} \right)\).
Tham gia Cộng đồng Lazi trên các mạng xã hội | |
Fanpage: | https://www.fb.com/lazi.vn |
Group: | https://www.fb.com/groups/lazi.vn |
Kênh FB: | https://m.me/j/AbY8WMG2VhCvgIcB |
LaziGo: | https://go.lazi.vn/join/lazigo |
Discord: | https://discord.gg/4vkBe6wJuU |
Youtube: | https://www.youtube.com/@lazi-vn |
Tiktok: | https://www.tiktok.com/@lazi.vn |
Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi
Vui | Buồn | Bình thường |