Bài tập  /  Bài đang cần trả lời

Hãy chứng minh công thức Hn = 2n−1 bằng quy nạp toán học. Hãy tính H(64) và so sánh với con số các bước đã được đưa ra trong tờ quảng cáo của trò chơi vào năm 1883.

Hãy chứng minh công thức Hn = 2n−1 bằng quy nạp toán học. Hãy tính H(64) và so sánh với con số các bước đã được đưa ra trong tờ quảng cáo của trò chơi vào năm 1883.

1 trả lời
Hỏi chi tiết
13
0
0
Tôi yêu Việt Nam
12/09 10:27:58

- Nếu chỉ có một đĩa (n=1), H(n) = 1.

- Nếu có n đĩa, để chuyển tất cả các đĩa từ tháp ban đầu sang tháp đích, ta phải thực hiện các bước sau:

Chuyển n-1 đĩa từ tháp ban đầu sang tháp trung gian.

Chuyển đĩa cuối cùng (đĩa lớn nhất) từ tháp ban đầu sang tháp đích.

Chuyển n-1 đĩa từ tháp trung gian sang tháp đích.

Số bước chuyển tất cả các đĩa là H(n) = 2 * H(n-1) + 1.

- Ta sẽ chứng minh công thức này bằng phương pháp quy nạp toán học:

Bước 1: Giả sử công thức đúng với n-1, tức là H(n-1) = 2^(n-1) - 1

Bước 2: Chứng minh công thức đúng với n, tức là H(n) = 2^n - 1

Ta có:

H(n) = 2 * H(n-1) + 1 (theo công thức đề bài)

= 2 * (2^(n-1) - 1) + 1 (theo giả sử ở bước 1)

= 2^n - 2 + 1

= 2^n - 1

Vậy ta đã chứng minh được công thức đúng với mọi n.

Để tính H(64), ta áp dụng công thức đã chứng minh:

H(64) = 2^64 - 1

= 18446744073709551615

Vậy H(64) = 18446744073709551615 trùng với con số ở trên bài báo

Mở khóa để xem toàn bộ nội dung trả lời

(?)
Bạn đã đạt đến giới hạn của mình. Bằng cách Đăng ký tài khoản, bạn có thể xem toàn bộ nội dung trả lời
Cải thiện điểm số của bạn bằng cách đăng ký tài khoản Lazi.
Xem toàn bộ các câu trả lời, chat trực tiếp 1:1 với đội ngũ Gia sư Lazi bằng cách Đăng nhập tài khoản ngay bây giờ
Tôi đã có tài khoản? Đăng nhập

Bạn hỏi - Lazi trả lời

Bạn muốn biết điều gì?

GỬI CÂU HỎI
Học tập không giới hạn cùng học sinh cả nước và AI, sôi động, tích cực, trải nghiệm
Bài tập liên quan
Bài tập Tin học Lớp 11 mới nhất

Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi

Vui Buồn Bình thường

Học ngoại ngữ với Flashcard

×
Trợ lý ảo Trợ lý ảo
×
Gia sư Lazi Gia sư