Bằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
Lời giải:
\({n^{2021}} + {n^{2020}} + 1 = {n^{2021}} - {n^2} + {n^{2020}} - n + {n^2} + n + 1\)
\( = {n^2}\left( {{n^{2019}} - 1} \right) + n\left( {{n^{2019}} - 1} \right) + \left( {{n^2} + n + 1} \right) = \left( {{n^2} + n} \right)\left( {{n^{2019}} - 1} \right) + \left( {{n^2} + n + 1} \right)\)
\( = n\left( {n + 1} \right)\left( {{n^{2019}} - 1} \right) + \left( {{n^2} + n + 1} \right)\left( 1 \right)\)
Để ý rằng, 2019 \( \vdots \) 3 và 2019 = 3 x 673. Nên nếu ta đặt A = \({n^3}\)thì \({n^{2019}} = {A^{673}}\)
Mặt khác, áp dụng hằng đẳng thức sau:
\({a^k} - {b^k} = \left( {a - b} \right)\left( {{a^{k - 1}} + {a^{k - 2}}b + {a^{k - 3}}{b^2} + ... + {a^2}{b^{k - 2}} + {b^{k - 1}}} \right)\)
Ta có \({n^{2019}} - 1 = {A^{673}} - 1 = {A^{673}} - 1 = \left( {A - 1} \right)\left( {{A^{672}} + {A^{671}} + ... + {A^1} + 1} \right)\)
Vậy suy ra \({n^{2019}} - 1 \vdots \left( {A - 1} \right)\)hay \({n^{2019}} - 1 \vdots \left( {{n^3} - 1} \right)\)
Mà \({n^3} - 1 = \left( {n - 1} \right)\left( {{n^2} + n + 1} \right) \Rightarrow \left( {{n^{2019}} - 1} \right) \vdots \left( {{n^2} + n + 1} \right)\left( 2 \right)\)
Từ (1) và (2) \( \Rightarrow \left( {{n^{2021}} + {n^{2020}} + 1} \right) \vdots \left( {{n^2} + n + 1} \right)\)
Như vậy để \({n^{2021}} + {n^{2020}} + 1\) là số nguyên tố thì có 2 trường hợp:
(1) \({n^2} + n + 1 = 1\), trường hợp này không xảy ra do n > 0 (gt)
(2) \({n^{2021}} + {n^{2020}} + 1 = {n^2} + n + 1\) hay \({n^{2020}}\left( {n + 1} \right) = n\left( {n + 1} \right)\)
\( \Rightarrow n\left( {n + 1} \right)\left( {{n^{2019}} - 1} \right) = 0\), do n > 0 nên \({n^{2019}} - 1 = 0\) hay n = 1
Thử lại ta có \({n^{2021}} + {n^{2020}} + 1 = {1^{2021}} + {1^{2020}} + 1 = 3\) là số nguyên tố.
Vậy n = 1 là đáp án cần tìm.
Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi
Vui | Buồn | Bình thường |