a) Cho tam giác ABC không phải là tam giác vuông với góc A nhọn và C^≥B^ . Vẽ đường cao CD và đặt tên các độ dài như trong Hình 1.
Hãy thay ? bằng chữ cái thích hợp để chứng minh công thức a2 = b2 + c2 – 2bccosA theo gợi ý sau:
Xét tam giác vuông BCD, ta có: a2 = d2 + (c – x)2 = d2 + x2 + c2 – 2xc. (1)
Xét tam giác vuông ACD, ta có: b2 = d2 + x2 ⇒ d2 = b2 – x2 (2)
cosA = ?b ⇒ ? = bcosA. (3)
Thay (2) và (3) vào (1), ta có: a2 = b2 + c2 – 2bccosA.
Lưu ý : Nếu B^>C^ thì ta vẽ đường cao BD và chứng minh tương tự.
b) Cho tam giác ABC với góc A tù. Làm tương tự như trên, chứng minh rằng ta cũng có:
a2 = b2 + c2 – 2bccosA.
Lưu ý: Vì A tù nên cosA = −xb.
c) Cho tam giác ABC vuông tại A. Hãy chứng tỏ công thức a2 = b2 + c2 – 2bccosA có thể viết là a2 = b2 + c2.
Bằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
a)
Xét tam giác vuông ACD, ta có: cosA = ADAC=xb ⇒ x = bcosA.
Vậy lời giải đúng:
Xét tam giác vuông BCD, ta có: a2 = d2 + (c – x)2 = d2 + x2 + c2 – 2xc. (1)
Xét tam giác vuông ACD, ta có: b2 = d2 + x2 ⇒ d2 = b2 – x2 (2)
cosA = xb ⇒ x = bcosA. (3)
Thay (2) và (3) vào (1), ta có : a2 = b2 + c2 – 2bccosA.
b) Với tam giác ABC có góc A tù :
Xét tam giác vuông BCD, ta có: a2 = d2 + (x + c)2 = d2 + x2 + c2 + 2xc. (4)
Xét tam giác vuông ACD, ta có: b2 = d2 + x2 ⇒ d2 = b2 – x2 (5)
cos CAD^ = ADAC=xb .
Do CAD^+CAB^=180o⇒CAB^=180o−CAD^ .
Suy ra: cos CAB^ = cos (180o−CAD^) = – cos CAD^ = −xb
⇒ cos CAB^ = −xb
⇒ x = –bcosCAB^ , tức là x = – bcosA (6)
Thay (5) và (6) vào (4), ta được : a2 = b2 + c2 _ 2bccosA.
Vậy với tam giác ABC có góc A tù ta cũng có : a2 = b2 + c2 – 2bccosA.
c) Với tam giác ABC vuông tại A thì cosA = cos90° = 0.
Suy ra a2 = b2 + c2 – 2bccosA = b2 + c2 – 2bc.0 = b2 + c2.
Vậy a2 = b2 + c2.
Tham gia Cộng đồng Lazi trên các mạng xã hội | |
Fanpage: | https://www.fb.com/lazi.vn |
Group: | https://www.fb.com/groups/lazi.vn |
Kênh FB: | https://m.me/j/AbY8WMG2VhCvgIcB |
LaziGo: | https://go.lazi.vn/join/lazigo |
Discord: | https://discord.gg/4vkBe6wJuU |
Youtube: | https://www.youtube.com/@lazi-vn |
Tiktok: | https://www.tiktok.com/@lazi.vn |
Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi
Vui | Buồn | Bình thường |