Cho tứ giác ABCD gọi M,N là hai điểm di động trên AB,CD sao cho \[\frac = \frac\] và I, J lần lượt là trung điểm của AD, BC.
a, Tính vecto IJ theo vecto AB, DC.
b, Chứng minh trung điểm P của MN nằm trên đường thẳng IJ.
Bằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
\(\left\{ {\begin{array}{*{20}{l}}{\overrightarrow {IJ} = \overrightarrow {IA} + \overrightarrow {AB} + \overrightarrow {BJ} }\\{\overrightarrow {IJ} = \overrightarrow {ID} + \overrightarrow {DC} + \overrightarrow {CJ} }\end{array}} \right.\)
Cộng vế với vế:
\(2\overrightarrow {IJ} = \left( {\overrightarrow {IA} + \overrightarrow {ID} } \right) + \left( {\overrightarrow {BJ} + \overrightarrow {CJ} } \right) + \overrightarrow {AB} + \overrightarrow {DC} = \overrightarrow {AB} + \overrightarrow {DC} \)
\( \Rightarrow \overrightarrow {IJ} = \frac{1}{2}\overrightarrow {AB} + \frac{1}{2}\overrightarrow {DC} \)
b) Đặt \(\frac = \frac = k\)
\(\left\{ {\begin{array}{*{20}{c}}{\overrightarrow {IP} = \overrightarrow {IA} + \overrightarrow {AM} + \overrightarrow {MP} }\\{\overrightarrow {IP} = \overrightarrow {ID} + \overrightarrow {DN} + \overrightarrow {NP} }\end{array}} \right.\)
\( \Rightarrow 2\overrightarrow {IP} = \left( {\overrightarrow {IA} + \overrightarrow {ID} } \right) + \left( {\overrightarrow {MP} + \overrightarrow {NP} } \right) + \overrightarrow {AM} + \overrightarrow {DN} = \overrightarrow {AM} + \overrightarrow {DN} \)
\( \Rightarrow 2\overrightarrow {IP} = k \cdot \overrightarrow {AB} + k \cdot \overrightarrow {DC} \)
\( \Rightarrow \overrightarrow {IP} = \frac{k}{2}\left( {\overrightarrow {AB} + \overrightarrow {DC} } \right) = \frac{k}{2} \cdot \overrightarrow {IJ} \)
⇒ P; I; J thẳng hàng hay P thuộc IJ.
Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi
Vui | Buồn | Bình thường |