Cho ∆ABC cân tại A có \(\widehat A = 45^\circ \).
Đường trung trực của cạnh AC cắt AB tại D. Trên cạnh AC lấy điểm E sao cho CE = BD. Chứng minh ∆BCD = ∆CBE. Từ đó suy ra \(\widehat {BDC} = \widehat {CEB}\).
Bằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
Xét ∆BCD và ∆CBE, có:
BC là cạnh chung.
CE = BD (giả thiết).
\(\widehat {DBC} = \widehat {ECB}\) (do ∆ABC cân tại A).
Do đó ∆BCD = ∆CBE (c.g.c)
Suy ra \(\widehat {BDC} = \widehat {CEB}\) (hai góc tương ứng).
Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi
Vui | Buồn | Bình thường |