Bài tập  /  Bài đang cần trả lời

Cho ∆ABC cân tại A có \(\widehat A = 45^\circ \). Kẻ đường trung tuyến AM của tam giác ABC. Chứng minh ba đường thẳng AM, BE, CD đồng quy tại một điểm.

Cho ∆ABC cân tại A có \(\widehat A = 45^\circ \).

Kẻ đường trung tuyến AM của tam giác ABC. Chứng minh ba đường thẳng AM, BE, CD đồng quy tại một điểm.

1 Xem trả lời
Hỏi chi tiết
20
0
0
Tôi yêu Việt Nam
12/09/2024 14:53:11

Vì điểm D thuộc đường trung trực của cạnh AC nên DA = DC.

Do đó ∆ACD cân tại D.

Suy ra \(\widehat {ACD} = \widehat {CAD} = 45^\circ \) (tính chất tam giác cân)

∆ACD cân tại D có \(\widehat {ACD} = \widehat {CAD} = 45^\circ \) nên ∆ACD vuông cân tại D.

Suy ra CD ⊥ AB hay \(\widehat {BDC} = 90^\circ \)

Mà \(\widehat {BDC} = \widehat {CEB}\) (câu b) nên \(\widehat {CEB} = 90^\circ \) hay BE ⊥ AC.

Vì ∆ABC cân tại A có AM là đường trung tuyến nên M là trung điểm BC.

Xét ∆ABM và ∆ACM, có:

AM là cạnh chung,

AB = AC (do ∆ABC cân tại A),

BM = CM (do M là trung điểm BC).

Do đó ∆ABM = ∆ACM (c.c.c).

Suy ra \(\widehat {AMB} = \widehat {AMC}\) (cặp góc tương ứng).

Mà \(\widehat {AMB} + \widehat {AMC} = 180^\circ \) (hai góc kề bù).

Suy ra \(\widehat {AMB} = \widehat {AMC} = 180^\circ :2 = 90^\circ \).

Do đó AM ⊥ BC.

Vì vậy AM là đường cao của ∆ABC.

∆ABC có AM, BE, CD là ba đường cao, suy ra AM, BE, CD đồng quy tại một điểm, điểm đó là trực tâm của ∆ABC.

Mở khóa để xem toàn bộ nội dung trả lời

(?)
Bạn đã đạt đến giới hạn của mình. Bằng cách Đăng ký tài khoản, bạn có thể xem toàn bộ nội dung trả lời
Cải thiện điểm số của bạn bằng cách đăng ký tài khoản Lazi.
Xem toàn bộ các câu trả lời, chat trực tiếp 1:1 với đội ngũ Gia sư Lazi bằng cách Đăng nhập tài khoản ngay bây giờ
Tôi đã có tài khoản? Đăng nhập

Bạn hỏi - Lazi trả lời

Bạn muốn biết điều gì?

GỬI CÂU HỎI
Học tập không giới hạn cùng học sinh cả nước và AI, sôi động, tích cực, trải nghiệm

Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi

Vui Buồn Bình thường
×
Trợ lý ảo Trợ lý ảo
×
Đấu trường tri thức | Lazi Quiz Challenge +500k
Gửi câu hỏi
×