Cho tứ giác lồi ABCD có các đường chéo AC = x, BD = y và góc giữa AC và BD bằng α. Gọi S là diện tích của tứ giác ABCD.
a) Chứng minh S=12xysinα .
b) Nêu kết quả trong trường hợp AC ⊥ BD.
Bằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
a) Ta có SABCD = SABD + SCBD.
Vẽ AH và CK vuông góc với BD tại H và K.
Gọi I là giao điểm của hai đường chéo AC và BD.
Ta có : AH = AI.sinα ; CK = CI.sinα.
SABCD=12AH.BD+12CK.BD=12BD.(AH+CK)=12BD.(AI+IC)sinα=12BD.ACsinα
⇒ SABCD=12x.ysinα
b) Nếu AC ⊥ BD thì sinα = sin90° = 1, khi đó SABCD=12x.y
Như vậy nếu tứ giác lồi có hai đường chéo vuông góc với nhau thì diện tích của tứ giác đó bằng một nửa tích độ dài của hai đường chéo.
Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi
Vui | Buồn | Bình thường |