Bài tập  /  Bài đang cần trả lời

Chứng minh rằng đường kính đi qua điểm chính giữa của một cung thì vuông góc với dây căng cung ấy và ngược lại.

Chứng minh rằng đường kính đi qua điểm chính giữa của một cung thì vuông góc với dây căng cung ấy và ngược lại.

1 Xem trả lời
Hỏi chi tiết
10
0
0
Đặng Bảo Trâm
12/09/2024 14:57:23

Mệnh đề: Đường kính đi qua điểm chính giữa của một cung thì vuông góc với dây căng cung ấy.

Giả sử đường kính MN đi qua M là điểm chính giữa cung AB

Vì M là điểm chính giữa cung AB nên ta có:

Mà dây MA chắn cung nhỏ AM, dây MB chắn cung nhỏ MB nên MA = MB (1)

Ta lại có: OA = OB (2) (cùng bằng bán kính đường tròn tâm O)

Từ (1) và (2) ta suy ra OM là đường trung trực của AB

Hay MN là đường trung trực của AB

Þ MN ^ AB (đpcm)

Mệnh đề đảo: Đường kính vuông góc với dây cung thì đi qua điểm chính giữa của cung ấy.

Chứng minh:

Giả sử đường kính MN vuông góc với dây AB tại H

Xét tam giác OAB có:

OA = OB (cùng bằng bán kính đường tròn tâm O)

Do đó, tam giác OAB cân tại O

Có: OH vuông góc với AB tại H (do MN vuông góc với dây AB tại H)

Do đó, OH là đường cao và cũng là đường phân giác

\( \Rightarrow \widehat {AOH} = \widehat {BOH} \Rightarrow \widehat {AOM} = \widehat {BOM}\)

Mà ta có:

Góc AOM chắn cung nhỏ AM

Góc BOM chắn cung nhỏ BM

 ⇒sd AM⏜=sd MB⏜⇒AM⏜=MB⏜

Do đó, M là điểm chính giữa của cung nhỏ AB (đpcm)

Mở khóa để xem toàn bộ nội dung trả lời

(?)
Bạn đã đạt đến giới hạn của mình. Bằng cách Đăng ký tài khoản, bạn có thể xem toàn bộ nội dung trả lời
Cải thiện điểm số của bạn bằng cách đăng ký tài khoản Lazi.
Xem toàn bộ các câu trả lời, chat trực tiếp 1:1 với đội ngũ Gia sư Lazi bằng cách Đăng nhập tài khoản ngay bây giờ
Tôi đã có tài khoản? Đăng nhập

Bạn hỏi - Lazi trả lời

Bạn muốn biết điều gì?

GỬI CÂU HỎI
Học tập không giới hạn cùng học sinh cả nước và AI, sôi động, tích cực, trải nghiệm

Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi

Vui Buồn Bình thường
×
Trợ lý ảo Trợ lý ảo
Gửi câu hỏi
×