LH Quảng cáo: lazijsc@gmail.com

Bài tập  /  Bài đang cần trả lời

Tính theo đường chim bay, xác định khoảng cách ngắn nhất để một người ở vị trí có toạ độ (– 3; 4) di chuyển được tới vùng phủ sóng theo đơn vị ki-lô-mét (làm tròn kết quả đến hàng phần mười).

Tính theo đường chim bay, xác định khoảng cách ngắn nhất để một người ở vị trí có toạ độ (– 3; 4) di chuyển được tới vùng phủ sóng theo đơn vị ki-lô-mét (làm tròn kết quả đến hàng phần mười).

1 trả lời
Hỏi chi tiết
8
0
0
Bạch Tuyết
12/09 15:54:12

Hướng dẫn giải:

Gọi vị trí người đó đang đứng là B(– 3; 4).

Ta có: \(\overrightarrow {BI} = \left( { - 2 - \left( { - 3} \right);\,1 - 4} \right) = \left( {1;\, - 3} \right)\), \(BI = \sqrt {{1^2} + {{\left( { - 3} \right)}^2}} = \sqrt {10} \).

BI > R nên B nằm ngoài đường tròn ranh giới, giả sử đường thẳng BI cắt đường tròn tại điểm A, khi đó AB là khoảng cách ngắn nhất từ B đến vùng phủ sóng.

Ta cần tìm tọa độ điểm A.

Đường thẳng BI có một vectơ chỉ phương là vectơ \(\overrightarrow {BI} \) nên nó có một vectơ pháp tuyến là \(\overrightarrow n = \left( {3;\,\,1} \right)\). Do đó, phương trình đường thẳng BI là 3(x + 3) + 1(y – 4) = 0 hay 3x + y + 5 = 0.

Tọa độ của giao điểm A là nghiệm của hệ phương trình \(\left\{ \begin{array}{l}3x + y + 5 = 0\\{\left( {x{\rm{ }} + {\rm{ }}2} \right)^2} + {\rm{ }}{\left( {y{\rm{ }}--{\rm{ }}1} \right)^2} = {\rm{ }}9\end{array} \right.\)

\( \Leftrightarrow \left\{ \begin{array}{l}y = - 3x - 5\\{\left( {x + 2} \right)^2} + {\left( { - 3x - 5 - 1} \right)^2} = 9\end{array} \right.\)

\( \Leftrightarrow \left\{ \begin{array}{l}y = - 3x - 5\\{x^2} + 4x + 4 + 9{x^2} + 36x + 36 = 9\end{array} \right.\)

\( \Leftrightarrow \left\{ \begin{array}{l}y = - 3x - 5\\10{x^2} + 40x + 31 = 0\end{array} \right.\)

\( \Leftrightarrow \left\{ \begin{array}{l}y = - 3x - 5\\\left[ \begin{array}{l}x = \frac{{ - 20 + 3\sqrt {10} }}\\x = \frac{{ - 20 - 3\sqrt {10} }}\end{array} \right.\end{array} \right.\)\( \Leftrightarrow \left[ \begin{array}{l}\left\{ \begin{array}{l}x = \frac{{ - 20 + 3\sqrt {10} }}\\y = \frac\end{array} \right.\\\left\{ \begin{array}{l}x = \frac{{ - 20 - 3\sqrt {10} }}\\y = \frac\end{array} \right.\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}A\left( {\frac{{ - 20 + 3\sqrt {10} }};\,\,\frac} \right)\\A\left( {\frac{{ - 20 - 3\sqrt {10} }};\,\,\frac} \right)\end{array} \right.\)

+ Với \(A\left( {\frac{{ - 20 + 3\sqrt {10} }};\,\,\frac} \right)\)

Ta có: \(AB = \sqrt {{{\left( { - 3 - \frac{{ - 20 + 3\sqrt {10} }}} \right)}^2} + {{\left( {4 - \frac} \right)}^2}} \approx 6,2\)

+ Với \(A\left( {\frac{{ - 20 - 3\sqrt {10} }};\,\,\frac} \right)\)

Ta có: \(AB = \sqrt {{{\left( { - 3 - \frac{{ - 20 - 3\sqrt {10} }}} \right)}^2} + {{\left( {4 - \frac} \right)}^2}} \approx 0,2\)

Do 0,2 < 6,2 nên ta chọn kết quả 0,2.

Vậy tính theo đường chim bay, khoảng cách ngắn nhất để một người ở vị trí có toạ độ (– 3; 4) di chuyển được tới vùng phủ sóng là 0,2 km.

Mở khóa để xem toàn bộ nội dung trả lời

(?)
Bạn đã đạt đến giới hạn của mình. Bằng cách Đăng ký tài khoản, bạn có thể xem toàn bộ nội dung trả lời
Cải thiện điểm số của bạn bằng cách đăng ký tài khoản Lazi.
Xem toàn bộ các câu trả lời, chat trực tiếp 1:1 với đội ngũ Gia sư Lazi bằng cách Đăng nhập tài khoản ngay bây giờ
Tôi đã có tài khoản? Đăng nhập

Bạn hỏi - Lazi trả lời

Bạn muốn biết điều gì?

GỬI CÂU HỎI
Học tập không giới hạn cùng học sinh cả nước và AI, sôi động, tích cực, trải nghiệm
Trắc nghiệm Toán học Lớp 10 mới nhất

Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi

Vui Buồn Bình thường

Học ngoại ngữ với Flashcard

×
Trợ lý ảo Trợ lý ảo
×
Gia sư Lazi Gia sư