LH Quảng cáo: lazijsc@gmail.com

Bài tập  /  Bài đang cần trả lời

Tìm các giá trị nguyên của biến số x để biểu thức đã cho cũng có giá trị nguyên a) \[\frac{2}\]; b) \[\frac\]; c) \[\frac{{3\sqrt x }}{{\sqrt x + 1}}\].

Tìm các giá trị nguyên của biến số x để biểu thức đã cho cũng có giá trị nguyên

a) \[\frac{2}\];

b) \[\frac\];

c) \[\frac{{3\sqrt x }}{{\sqrt x + 1}}\].

1 trả lời
Hỏi chi tiết
8
0
0
CenaZero♡
12/09 16:21:40

a) \[\frac{2}\] có điều kiện x ≠ 1

Để \[\frac{2}\] nhận giá trị nguyên thì 2 ⋮ (x - 1) Û (x - 1) Î Ư(2) = {±1; ±2}.

Ta có bảng:

x - 1

-2

-1

1

2

x

-1 (thoả mãn)

0 (thoả mãn)

2 (thoả mãn)

3 (thoả mãn)

Vậy với x Î {-1; 0; 1; 2; 3} thì biểu thức \[\frac{2}\] nhận giá trị nguyên

b) \[\frac\] có điều kiện x ≠ 1.

Ta có: \[\frac = \frac = \frac - \frac{1} = 1 - \frac{1}\].

Để nhận giá trị nguyên thì 1 ⋮ (x - 1) Û (x - 1) Î Ư(1) = {±1}.

Ta có bảng:

x - 1

-1

1

x

0 (thoả mãn)

2

Vậy với x Î {0; 2}\[\frac\] thì biểu thức \[\frac\] nhận giá trị nguyên.

c) \[\frac{{3\sqrt x }}{{\sqrt x + 1}}\] có điều kiện là x ³ 0

\[\frac{{3\sqrt x }}{{\sqrt x + 1}} = \frac{{3\left( {\sqrt x + 1} \right) - 3}}{{\sqrt x + 1}} = \frac{{3\left( {\sqrt x + 1} \right)}}{{\sqrt x + 1}} - \frac{3}{{\sqrt x + 1}} = 3 - \frac{3}{{\sqrt x + 1}}\]

Để \[\frac{{3\sqrt x }}{{\sqrt x + 1}}\] nhận giá trị nguyên thì 3 ⋮ \[\left( {\sqrt x + 1} \right)\] \[ \Leftrightarrow \left( {\sqrt x + 1} \right) \in U\left( 3 \right) = {\rm{\{ }} \pm 1;\,\, \pm 3\} \].

Ta có bảng:

\[\sqrt x + 1\]

-3

-1

1

3

\[\sqrt x \]

-4 (loại)

-2 (loại)

0

2

x

0 (thoả mãn)

4 (thoả mãn)

Vậy với x Î {0; 4} thì biểu thức \[\frac{{3\sqrt x }}{{\sqrt x + 1}}\] nhận giá trị nguyên.

Mở khóa để xem toàn bộ nội dung trả lời

(?)
Bạn đã đạt đến giới hạn của mình. Bằng cách Đăng ký tài khoản, bạn có thể xem toàn bộ nội dung trả lời
Cải thiện điểm số của bạn bằng cách đăng ký tài khoản Lazi.
Xem toàn bộ các câu trả lời, chat trực tiếp 1:1 với đội ngũ Gia sư Lazi bằng cách Đăng nhập tài khoản ngay bây giờ
Tôi đã có tài khoản? Đăng nhập

Bạn hỏi - Lazi trả lời

Bạn muốn biết điều gì?

GỬI CÂU HỎI
Học tập không giới hạn cùng học sinh cả nước và AI, sôi động, tích cực, trải nghiệm
Bài tập liên quan
Bài tập Toán học Lớp 12 mới nhất

Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi

Vui Buồn Bình thường

Học ngoại ngữ với Flashcard

×
Trợ lý ảo Trợ lý ảo
×
Gia sư Lazi Gia sư