Cho hàm số y = f(x) = 4x2 – 4mx + m2 – 2m. Tìm tất cả các giá trị của tham số m sao cho min(x) = 3 trên [–2; 0].
Bằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
Hàm số y = f(x) = 4x2 – 4mx + m2 – 2m có a = 4 > 0, −b2a=m2
• TH1: Nếu m2≤−2⇔m≤−4
Thì f(x) đồng biến trên [–2; 0]
Suy ra f(x)min = f(–2) = 4(–2)2 – 4m . (–2) + m2 – 2m = m2 + 6m + 16 = 3
⇔ m2 + 6m + 13 = 0
⇔ m2 + 6m + 9 + 4 = 0
⇔ (m + 3)2 + 4 = 0
Vì (m + 3)2 ≥ 0 với mọi m
Nên (m + 3)2 + 4 > 0 với mọi m
Suy ra phương trình m2 + 6m + 13 = 0 vô nghiệm
• TH2: Nếu m2≥0⇔m≥0
Thì f(x) nghịch biến trên [–2; 0]
Suy ra f(x)min = f(0) = 4(0)2 – 4m . 0 + m2 – 2m = m2 – 2m = 3
⇔ m2 – 2m – 3 = 0
⇔ m2 + m – 3m – 3 = 0
⇔ m(m + 1) – 3(m + 1) = 0
⇔ (m + 1)(m – 3) = 0
⇔ m=−1m=3
Mà m ≥ 0 nên m = 3
+) TH3: Nếu
Thì f(x) nghịch biến trên [–2; 0]
Suy ra f(x)min=fm2=4m22−4mm2+m2−2m=3
⇔ – 2m = 3
⇔ m=−32 (thỏa mãn)
Vậy m=−32 hoặc m = 3.
Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi
Vui | Buồn | Bình thường |