Bài tập  /  Bài đang cần trả lời

Hàng tháng, một người gửi vào ngân hàng một khoản tiền tiết kiệm không đổi a đồng. Giả sử lãi suất hằng tháng là r không đổi và theo thể thức lãi kép (tiền lãi của tháng trước được cộng vào vốn của tháng kế tiếp). Gọi Tn (n ≥ 1) là tổng tiền vốn và lãi của người đó có trong ngân hàng tại thời điểm ngay sau khi gửi vào khoản thứ n + 1. a) Tính T1, T2, T3. b) Dự đoán công thức tính Tn và chứng minh công thức đó bằng phương pháp quy nạp toán ...

Hàng tháng, một người gửi vào ngân hàng một khoản tiền tiết kiệm không đổi a đồng. Giả sử lãi suất hằng tháng là r không đổi và theo thể thức lãi kép (tiền lãi của tháng trước được cộng vào vốn của tháng kế tiếp). Gọi Tn (n ≥ 1) là tổng tiền vốn và lãi của người đó có trong ngân hàng tại thời điểm ngay sau khi gửi vào khoản thứ n + 1.

a) Tính T1, T2, T3.

b) Dự đoán công thức tính Tn và chứng minh công thức đó bằng phương pháp quy nạp toán học
1 Xem trả lời
Hỏi chi tiết
13
0
0
Tô Hương Liên
12/09/2024 16:33:20

Hướng dẫn giải

a)

– T1 là tổng tiền vốn và lãi của người đó có trong ngân hàng tại thời điểm ngay sau khi gửi vào khoản thứ 2:

T1 = (a + ar) + a = a(1 + r) + a = a[(1 + r) + 1].

– T2 là tổng tiền vốn và lãi của người đó có trong ngân hàng tại thời điểm ngay sau khi gửi vào khoản thứ 3:

T2 = T1 + T1 . r + a

= a[(1 + r) + 1] + a[(1 + r) + 1]r + a

= a[(1 + r) + 1](1 + r) + a

= a(1 + r)2 + a(1 + r) + a

= a[(1 + r)2 + (1 + r) + 1].

– T3 là tổng tiền vốn và lãi của người đó có trong ngân hàng tại thời điểm ngay sau khi gửi vào khoản thứ 4:

T3 = T2 + T2 . r + a

= a[(1 + r)2 + (1 + r) + 1] + a[(1 + r)2 + (1 + r) + 1]r + a

= a[(1 + r)2 + (1 + r) + 1](1 + r) + a

= a(1 + r)3 + a(1 + r)2 + a(1 + r) + a

= a[(1 + r)3 + (1 + r)2 + (1 + r) + 1].

b) Từ câu a) ta có thể dự đoán:

Tn = a[(1 + r)n + ... + (1 + r)2 + (1 + r) + 1]

=a.1−(1+r)n+11−(1+r)=a.1−(1+r)n+1−r=a.(1+r)n+1−1r.

Ta chứng minh bằng quy nạp toán học.

Bước 1. Với n = 1 ta có:

T1 = a[(1 + r) + 1]

=a.r2+2rr=a.(r2+2r+1)−1r=a.(1+r)2−1r=a.(1+r)1+1−1r.                                                                                                 

Như vậy khẳng định đúng cho trường hợp n = 1.

Bước 2. Giả sử khẳng định đúng với n = k ≥ 1, tức là ta có: Tk = a.(1+r)k+1−1r.

Ta sẽ chứng minh rằng khẳng định cũng đủng với n = k + 1, nghĩa là ta sẽ chứng minh: Tk + 1 = a.(1+r)(k+1)+1−1r.

Thật vậy,

Tk + 1 = Tk + Tk . r + a

=a.(1+r)k+1−1r+a.(1+r)k+1−1r.r+a

=a[(1+r)k+1−1r+(1+r)k+1−1r.r+1]

=a[(1+r)k+1−1r+[(1+r)k+1−1]rr+rr]

=a.(1+r)k+1−1+[(1+r)k+1−1]r+rr

=a.(1+r)k+1−1+r(1+r)k+1−r+rr

=a.(1+r)k+1−1+r(1+r)k+1r

=a.(1+r)(1+r)k+1−1r

=a.(1+r)k+2−1r

  =a.(1+r)(k+1)+2−1r.

Vậy khẳng định đúng với n = k + 1.

Theo nguyên lí quy nạp toán học, khẳng định đúng với mọi số tự nhiên n ≥ 1.

Vậy Tn = a.(1+r)n+1−1r với mọi số tự nhiên n ≥ 1.

Mở khóa để xem toàn bộ nội dung trả lời

(?)
Bạn đã đạt đến giới hạn của mình. Bằng cách Đăng ký tài khoản, bạn có thể xem toàn bộ nội dung trả lời
Cải thiện điểm số của bạn bằng cách đăng ký tài khoản Lazi.
Xem toàn bộ các câu trả lời, chat trực tiếp 1:1 với đội ngũ Gia sư Lazi bằng cách Đăng nhập tài khoản ngay bây giờ
Tôi đã có tài khoản? Đăng nhập

Bạn hỏi - Lazi trả lời

Bạn muốn biết điều gì?

GỬI CÂU HỎI
Học tập không giới hạn cùng học sinh cả nước và AI, sôi động, tích cực, trải nghiệm
Câu hỏi liên quan

Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi

Vui Buồn Bình thường
×
Trợ lý ảo Trợ lý ảo
Gửi câu hỏi
×