Cho hình chóp S.ABCD có đáy là hình thang ABCD, AD // BC, AD = 2BC. Gọi E, F, I lần lượt là trung điểm của các cạnh SA, AD, SD.
a) Chứng minh: (BEF) // (SCD) và CI // (BEF).
Bằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
a) • Xét ∆SAD có E, F lần lượt là trung điểm của các cạnh SA, AD nên EF là đường trung bình của tam giác SAD, suy ra EF // SD.
Mà SD ⊂ (SCD), suy ra EF // (SCD).
Ta có F là trung điểm của AD nên AF=FD=12AD,
Mà AD = 2BC hay BC=12AD nên BC = AF = FD.
Lại có BC // AD hay BC // FD
Do đó tứ giác BFDC là hình bình hành nên BF // CD
Mà CD ⊂ (SCD)
Suy ra BF // (SCD).
Ta có: EF // (SCD);
BF // (SCD);
EF ∩ BF = F trong (BEF).
Suy ra (BEF) // (SCD).
• Xét ∆SAD có: E, I lần lượt là trung điểm của SA, SD
Suy ra EI là đường trung bình của ∆SAD, do đó EI // AD và EI=12AD
Mà AD // BC và BC=12AD
Suy ra EI // BC và EI=BC=12AD
Do đó tứ giác EICB là hình bình hành nên CI // BE.
Mặt khác BE ⊂ (BEF), suy ra CI // (BEF).
Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi
Vui | Buồn | Bình thường |