Khi tổng kết cuối năm học người ta thấy số học sinh giỏi ở một trường Trung học cơ sở phân bố ở các khối 6, 7, 8, 9 theo tỉ lệ 1,5; 1,4; 1,3 và 1,2. Tính số học sinh giỏi của mỗi khối biết tổng số học sinh giỏi của cả trường là 162 em.
Bằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
Gọi x, y, z, t lần lượt là số học sinh giỏi của mỗi khối lớp 6, 7, 8, 9.
Theo đề bài, ta có \(\frac{x}{{1,5}} = \frac{y}{{1,4}} = \frac{z}{{1,3}} = \frac{t}{{1,2}}\) và x + y + z + t = 162.
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
\(\frac{x}{{1,5}} = \frac{y}{{1,4}} = \frac{z}{{1,3}} = \frac{t}{{1,2}}\)\( = \frac{{1,5 + 1,4 + 1,3 + 1,2}}\)\( = \frac{{5,4}} = 30\).
Suy ra
x = 30 . 1,5 = 45; y = 30 . 1,4 = 42;
z = 30 . 1,3 = 39; t = 30 . 1,2 = 36.
Vậy số học sinh giỏi của mỗi khối lớp 6, 7, 8, 9 lần lượt là 45, 42, 39 và 36 học sinh.
Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi
Vui | Buồn | Bình thường |