Bài tập  /  Bài đang cần trả lời

Trong không gian Oxyz, cho điểm H(3; 2; 4). a) Viết phương trình mặt phẳng (P) chứa điểm H và trục Oy. b) Viết phương trình mặt phẳng (Q) đi qua điểm H và cắt các trục tọa độ Ox, Oy, Oz lần lượt tại các điểm A, B, C (với A, B, C đều không trùng khớp với gốc tọa độ O) sao cho H là trực tâm tam giác ABC.

Trong không gian Oxyz, cho điểm H(3; 2; 4).

a) Viết phương trình mặt phẳng (P) chứa điểm H và trục Oy.

b) Viết phương trình mặt phẳng (Q) đi qua điểm H và cắt các trục tọa độ Ox, Oy, Oz lần lượt tại các điểm A, B, C (với A, B, C đều không trùng khớp với gốc tọa độ O) sao cho H là trực tâm tam giác ABC.

1 Xem trả lời
Hỏi chi tiết
11
0
0
Phạm Văn Phú
12/09 17:42:41

a) Ta có: \(\overrightarrow {OH} \) = (3; 2; 4), \(\overrightarrow j \) = (0; 1; 0) (\(\overrightarrow j \) là vectơ chỉ phương của Oy).

Vì mặt phẳng (P) chứa điểm H và trục Oy nên

\(\overrightarrow = \left[ {\overrightarrow {OH} ,\overrightarrow j } \right] = \left( {\left| {\begin{array}{*{20}{c}}2&4\\1&0\end{array}} \right|;\left| {\begin{array}{*{20}{c}}4&3\\0&0\end{array}} \right|;\left| {\begin{array}{*{20}{c}}3&2\\0&1\end{array}} \right|} \right)\) = (−4; 0; 3).

Vậy phương trình mặt phẳng (P) là:

−4(x – 0) + 0(y – 0) +3(z – 0) = 0

⇔ −4x + 3z = 0.

b) Do H là trực tâm tam giác ABC nên OH ⊥ (ABC)

⇒ \(\overrightarrow {OH} \) = (3; 2; 4) là một vectơ pháp tuyến của mặt phẳng (ABC). Phương trình mặt phẳng (ABC) là:

3(x – 3) + 2(y – 2) + 4(z – 4) = 0

⇔ 3x + 2y + 4z – 29 = 0.

Mở khóa để xem toàn bộ nội dung trả lời

(?)
Bạn đã đạt đến giới hạn của mình. Bằng cách Đăng ký tài khoản, bạn có thể xem toàn bộ nội dung trả lời
Cải thiện điểm số của bạn bằng cách đăng ký tài khoản Lazi.
Xem toàn bộ các câu trả lời, chat trực tiếp 1:1 với đội ngũ Gia sư Lazi bằng cách Đăng nhập tài khoản ngay bây giờ
Tôi đã có tài khoản? Đăng nhập

Bạn hỏi - Lazi trả lời

Bạn muốn biết điều gì?

GỬI CÂU HỎI
Học tập không giới hạn cùng học sinh cả nước và AI, sôi động, tích cực, trải nghiệm

Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi

Vui Buồn Bình thường
×
Trợ lý ảo Trợ lý ảo
×
Đấu trường tri thức | Lazi Quiz Challenge +500k
Gửi câu hỏi
×