Trong không gian Oxyz, cho điểm H(3; 2; 4).
a) Viết phương trình mặt phẳng (P) chứa điểm H và trục Oy.
b) Viết phương trình mặt phẳng (Q) đi qua điểm H và cắt các trục tọa độ Ox, Oy, Oz lần lượt tại các điểm A, B, C (với A, B, C đều không trùng khớp với gốc tọa độ O) sao cho H là trực tâm tam giác ABC.
Bằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
a) Ta có: \(\overrightarrow {OH} \) = (3; 2; 4), \(\overrightarrow j \) = (0; 1; 0) (\(\overrightarrow j \) là vectơ chỉ phương của Oy).
Vì mặt phẳng (P) chứa điểm H và trục Oy nên
\(\overrightarrow = \left[ {\overrightarrow {OH} ,\overrightarrow j } \right] = \left( {\left| {\begin{array}{*{20}{c}}2&4\\1&0\end{array}} \right|;\left| {\begin{array}{*{20}{c}}4&3\\0&0\end{array}} \right|;\left| {\begin{array}{*{20}{c}}3&2\\0&1\end{array}} \right|} \right)\) = (−4; 0; 3).
Vậy phương trình mặt phẳng (P) là:
−4(x – 0) + 0(y – 0) +3(z – 0) = 0
⇔ −4x + 3z = 0.
b) Do H là trực tâm tam giác ABC nên OH ⊥ (ABC)
⇒ \(\overrightarrow {OH} \) = (3; 2; 4) là một vectơ pháp tuyến của mặt phẳng (ABC). Phương trình mặt phẳng (ABC) là:
3(x – 3) + 2(y – 2) + 4(z – 4) = 0
⇔ 3x + 2y + 4z – 29 = 0.
Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi
Vui | Buồn | Bình thường |