Gọi I là giao điểm giữa tiệm cận đứng và tiệm cận ngang của đồ thị hàm số \(y = \frac\). Cho điểm K(3; 5), tính hệ số góc của đường thẳng qua I và K.
Bằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
Ta có: \(\mathop {\lim }\limits_{x \to {2^ + }} y = \mathop {\lim }\limits_{x \to {2^ + }} \frac = + \infty \);
\(\mathop {\lim }\limits_{x \to {2^ - }} y = \mathop {\lim }\limits_{x \to {2^ - }} \frac = - \infty \).
Do đó, đường thẳng x = 2 là tiệm cận đứng của đồ thị hàm số.
\(\mathop {\lim }\limits_{x \to - \infty } y = \mathop {\lim }\limits_{x \to - \infty } \frac = 2\);
\(\mathop {\lim }\limits_{x \to + \infty } y = \mathop {\lim }\limits_{x \to + \infty } \frac = 2\).
Do đó, đường thẳng y = 2 là tiệm cận ngang của đồ thị hàm số.
Suy ra điểm I(2; 2).
Đường thẳng đi qua I(2; 2) và K(3; 5) có hệ số góc là: a = \(\frac = 3\).
Vậy hệ số góc của đường thẳng đi qua hai điểm I và K là 3.
Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi
Vui | Buồn | Bình thường |