Một công ty ước tính rằng chi phí C (USD) để sản xuất x đơn vị sản phẩm có thể được mô hình hóa bằng công thức
C = 800 + 0,04x + 0,0002x2.
Tìm mức sản xuất sao cho chi phí trung bình \(\overline C (x) = \frac{{C(x)}}{x}\) cho mỗi đơn vị hàng hóa là nhỏ nhất.
Bằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
Ta có: \(\overline C (x) = \frac{{C(x)}}{x} = \frac{x} + 0,04 + 0,0002x\)
Suy ra, \(\overline {C'} (x) = - \frac{{{x^2}}} + 0,0002 = \frac{{0,0002{x^2} - 800}}{{{x^2}}}\)
\(\overline {C'} (x)\) = 0 ⇔ x = 2 000 (do x > 0).
Bảng biến thiên của hàm số:
Từ bảng biến thiên suy ta với mức sản xuất là 2 000 thì chi phí trung bình cho mỗi đơn vị hàng hóa là nhỏ nhất.
Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi
Vui | Buồn | Bình thường |