Bài tập  /  Bài đang cần trả lời

Cho hàm số y = \(\frac{1}{3}\)x3 + (m – 1)x2 + (2m – 3)x + \(\frac{2}{3}\). a) Khảo sát sự biến thiên và vẽ đồ thị của hàm số khi m = 2. b) Tìm m để hàm số có hai điểm cực trị x1 và x2 thỏa mãn \(x_1^2 + x_2^2 = 5\). c) Tìm m để hàm số đồng biến trên ℝ. d) Tìm m để hàm số đồng biến trên khoảng (1; +∞).

Cho hàm số y = \(\frac{1}{3}\)x3 + (m – 1)x2 + (2m – 3)x + \(\frac{2}{3}\).

a) Khảo sát sự biến thiên và vẽ đồ thị của hàm số khi m = 2.

b) Tìm m để hàm số có hai điểm cực trị x1 và x2 thỏa mãn \(x_1^2 + x_2^2 = 5\).

c) Tìm m để hàm số đồng biến trên ℝ.

d) Tìm m để hàm số đồng biến trên khoảng (1; +∞).

1 Xem trả lời
Hỏi chi tiết
13
0
0
Trần Đan Phương
12/09 17:50:59

a) Khi m = 2, ta có: y = \(\frac{1}{3}\)x3 + x2 + x + \(\frac{2}{3}\).

                                y' = x2 + 2x + 1 = (x + 1)2 ≥ 0 với mọi x.

Hàm số luôn đồng biến trên ℝ.

Hàm số không có cực trị.

Bảng biến thiên của hàm số như sau:

Ta có: \(\mathop {\lim }\limits_{x \to + \infty } y = + \infty ;\mathop {\lim }\limits_{x \to - \infty } y = - \infty \)

Đồ thị hàm số nhận điểm I\(\left( { - 1;\frac{1}{3}} \right)\) làm tâm đối xứng. Đồ thị hàm số có hình vẽ như sau:

b) Ta có: y = \(\frac{1}{3}\)x3 + (m – 1)x2 + (2m – 3)x + \(\frac{2}{3}\)

               y' = x2 + 2(m – 1)x + 2m – 3

               y' = x2 + 2mx – 2x + 2m – 3

               y' = (x2 – 2x – 3) + (2mx + 2m)

               y' = (x + 1)(x – 3) + 2m(x + 1).

               y' = (x + 1) (x – 3 + 2m)

               y' = 0 khi x = −1 hay x = 3 – 2m

Để hàm số có hai nghiệm phân biệt thì x1 ≠ x2 hay 3 – 2m ≠ −1 hay m ≠ 2.   

Ta có: \(x_1^2 + x_2^2 = 5\)

           (−1)2 + (3 – 2m)2 = 5

            (3 – 2m)2 = 4

Suy ra 3 – 2m = 2 hoặc 3 – 2m = −2

⇒ m = \(\frac{5}{2}\) hoặc m \(\frac{1}{2}\).

Vậy m ∈ \(\left\{ {\frac{5}{2};\frac{1}{2}} \right\}\).

c) Ta có: y' = x2 + 2(m – 1)x + 2m – 3

Để hàm số đồng biến trên ℝ ⇔ \(\left\{ \begin{array}{l}a = 1 > 0\\\Delta \le 0\end{array} \right.\)⇔ \(\left\{ \begin{array}{l}a = 1 > 0\\4{\left( {m - 1} \right)^2} - 4\left( {2m - 3} \right) \le 0\end{array} \right.\)        

m2 – 2m + 1 – 2m + 3 ≤ 0

m2 – 4m + 4 ≤ 0

(m – 2)2 ≤ 0

⇒ m = 2.

d) Ta có: y' = x2 + 2(m – 1)x + 2m – 3

             y' = 0 ⇔ \(\left[ \begin{array}{l}x = - 1\\x = 3 - 2m\end{array} \right.\)

Trường hợp 1: −1 ≤ 3 – 2m ⇔ m ≤ 2. Ta có bảng biến thiên như sau:

Để hàm số đồng biến trên (1; +∞) thì 3 – 2m ≤ 1 ⇔ m ≥ 1.

Vậy kết hợp điều kiện ta được 1 ≤ m ≤ 2.

Trường hợp 2: 3 – 2m < −1 ⇔ m > 2. Có bảng biến thiên như sau:

Trường hợp này hàm số đồng biến trên (−1; +∞) nên hiển nhiên đồng biến trên (1; +∞).

Vậy trường hợp này m > 2.

Vậy hàm số đồng biến trên khoảng (1; +∞) khi và chỉ khi m ≥ 1.

Mở khóa để xem toàn bộ nội dung trả lời

(?)
Bạn đã đạt đến giới hạn của mình. Bằng cách Đăng ký tài khoản, bạn có thể xem toàn bộ nội dung trả lời
Cải thiện điểm số của bạn bằng cách đăng ký tài khoản Lazi.
Xem toàn bộ các câu trả lời, chat trực tiếp 1:1 với đội ngũ Gia sư Lazi bằng cách Đăng nhập tài khoản ngay bây giờ
Tôi đã có tài khoản? Đăng nhập

Bạn hỏi - Lazi trả lời

Bạn muốn biết điều gì?

GỬI CÂU HỎI
Học tập không giới hạn cùng học sinh cả nước và AI, sôi động, tích cực, trải nghiệm
Câu hỏi liên quan

Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi

Vui Buồn Bình thường
×
Trợ lý ảo Trợ lý ảo
×
Đấu trường tri thức | Lazi Quiz Challenge +500k
Gửi câu hỏi
×