LH Quảng cáo: lazijsc@gmail.com

Bài tập  /  Bài đang cần trả lời

Cho hàm số y = x + 1 có đồ thị là (d) và hàm số y = –x + 3 có đồ thị là (d'): a, Vẽ (d) và (d') trên cùng 1 mặt phẳng tọa độ. b, Hai đường thẳng (d) và (d') cắt nhau tại C và cắt trục Ox theo thứ tự A và B. Tìm tọa độ các điểm A, B, C (tìm tọa độ điểm C bằng phương pháp đại số). c, Tính chu vi và diện tích của tam giác ABC (với đơn vị đo trên các trục tọa độ là cm). d, Tính góc tạo bởi đường thẳng y = x + 1 với trục Ox.

Cho hàm số y = x + 1 có đồ thị là (d) và hàm số y = –x + 3 có đồ thị là (d'):

a, Vẽ (d) và (d') trên cùng 1 mặt phẳng tọa độ.

b, Hai đường thẳng (d) và (d') cắt nhau tại C và cắt trục Ox theo thứ tự A và B. Tìm tọa độ các điểm A, B, C (tìm tọa độ điểm C bằng phương pháp đại số).

c, Tính chu vi và diện tích của tam giác ABC (với đơn vị đo trên các trục tọa độ là cm).

d, Tính góc tạo bởi đường thẳng y = x + 1 với trục Ox.

1 trả lời
Hỏi chi tiết
8
0
0
Tôi yêu Việt Nam
12/09 17:52:33

a)

Đường thẳng (d) đi qua hai điểm (0; 1) và (–1; 0).

Đường thẳng (d’) đi qua hai điểm (0; 3) và (3; 0).

Hình vẽ:

b)

Tọa độ điểm A(–1; 0) và B(3; 0) như hình vẽ.

Gọi điểm C(x0; y0)

Tọa độ của điểm C là nghiệm của hệ phương trình:

\(\left\{ \begin{array}{l}{y_0} = {x_0} + 1\\{y_0} = - {x_0} + 3\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{x_0} - {y_0} = - 1\\ - {x_0} - {y_0} = - 3\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{x_0} = 1\\{y_0} = 2\end{array} \right.\)

Do đó, C(1; 2)

c)

Ta có:

\[\overrightarrow {AB} = \left( {4;0} \right) \Rightarrow \left| {\overrightarrow {AB} } \right| = AB = 4\] (cm)

\[\overrightarrow {AC} = \left( {2;2} \right) \Rightarrow \left| {\overrightarrow {AC} } \right| = AC = 2\sqrt 2 \] (cm)

\[\overrightarrow {BC} = \left( { - 2;2} \right) \Rightarrow \left| {\overrightarrow {BC} } \right| = BC = 2\sqrt 2 \] (cm)

Chu vi tam giác ABC là: C = AB + AC + BC = \(4 + 4\sqrt 2 \) (cm)

d)

Góc tạo bởi y = x + 1 với Ox chính là góc \(\widehat {CAB}\)

Xét tam giác ABC

Ta có:

\(\begin{array}{l}C{B^2} = C{A^2} + A{B^2} - 2CA.AB.\cos \widehat {CAB}\\ \Rightarrow \cos \widehat {CAB} = \frac{{C{A^2} + A{B^2} - C{B^2}}} = \frac{{{{\left( {2\sqrt 2 } \right)}^2} + {4^2} - {{\left( {2\sqrt 2 } \right)}^2}}}{{2.2\sqrt 2 .4}} = \frac{{\sqrt 2 }}{2}\\ \Rightarrow \widehat {CAB} = 45^\circ \end{array}\)

Mở khóa để xem toàn bộ nội dung trả lời

(?)
Bạn đã đạt đến giới hạn của mình. Bằng cách Đăng ký tài khoản, bạn có thể xem toàn bộ nội dung trả lời
Cải thiện điểm số của bạn bằng cách đăng ký tài khoản Lazi.
Xem toàn bộ các câu trả lời, chat trực tiếp 1:1 với đội ngũ Gia sư Lazi bằng cách Đăng nhập tài khoản ngay bây giờ
Tôi đã có tài khoản? Đăng nhập

Bạn hỏi - Lazi trả lời

Bạn muốn biết điều gì?

GỬI CÂU HỎI
Học tập không giới hạn cùng học sinh cả nước và AI, sôi động, tích cực, trải nghiệm
Bài tập liên quan
Bài tập Toán học Lớp 12 mới nhất
Trắc nghiệm Toán học Lớp 12 mới nhất

Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi

Vui Buồn Bình thường

Học ngoại ngữ với Flashcard

×
Trợ lý ảo Trợ lý ảo
×
Gia sư Lazi Gia sư