a) Khảo sát sự biến thiên và vẽ đồ thị hàm số y = −x3 + 3x2 – 2.
b) Tìm điều kiện của tham số m để phương trình x3 – 3x2 + 5 – m = 0 có ba nghiệm phân biệt.
c) Tìm điểm thuộc đồ thị hàm số mà tiếp tuyến với đồ thị tại điểm có hệ số góc lớn nhất.
Bằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
a) Tập xác định: D = ℝ.
Ta có: y' = −3x2 + 6x
y' = 0 ⇔ x = 0 hoặc x = 2.
Ta có bảng biến thiên sau:
Hàm số đồng biến trên khoảng (0; 2).
Hàm số nghịch biến trên khoảng (−∞; 0) và (2; +∞).
Điểm cực đại và cực tiểu của hàm số lần lượt là (2; 2) và (0; −2).
Đồ thị hàm số nhận điểm uốn I(1; 0) làm tâm đối xứng.
b) Ta có: x3 – 3x2 + 5 – m = 0 ⇔ −x3 + 3x2 – 2 = 3 – m.
Vậy phương trình đã cho có ba nghiệm phân biệt khi và chỉ khi đường thẳng y = 3 – m cắt đồ thị y = −x3 + 3x2 – 2 tại ba điểm phân biệt.
Điều này tương đương với −2 < 3 – m < 2 ⇔ 1 < m < 5.
c) Ta có: y' = −3x2 + 6x = (−3x2 + 6x – 3) + 3 = −3(x – 1)2 + 3 ≤ 3, ∀x ∈ ℝ.
Vậy tiếp tuyến có hệ số góc lớn nhất bằng 3 tại x = 1.
Phương trình tiếp tuyến này là y = y'(1)(x – 1) + y(1)
⇔ y = 3(x – 1) + 0
⇔ y = 3x – 3.
Tham gia Cộng đồng Lazi trên các mạng xã hội | |
Fanpage: | https://www.fb.com/lazi.vn |
Group: | https://www.fb.com/groups/lazi.vn |
Kênh FB: | https://m.me/j/AbY8WMG2VhCvgIcB |
LaziGo: | https://go.lazi.vn/join/lazigo |
Discord: | https://discord.gg/4vkBe6wJuU |
Youtube: | https://www.youtube.com/@lazi-vn |
Tiktok: | https://www.tiktok.com/@lazi.vn |
Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi
Vui | Buồn | Bình thường |