Cho ∆ABC vuông tại A, đường cao AH. Vẽ đường tròn tâm A, bán kính AH, kẻ các tiếp tuyến BD, CE với đường tròn tâm A (D, E là các tiếp điểm khác H). Chứng minh rằng:
a. 3 điểm D, A, E thẳng hàng.
b. DE tiếp xúc với đường tròn có đường kính BC.
Bằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
a. Theo tính chất 2 tiếp tuyến cắt nhau \(\left\{ {\begin{array}{*{20}{c}}{\widehat {DAB} = \widehat {BAH}}\\{\widehat {HAC} = \widehat {CAE}}\end{array}} \right.\)
\( \Rightarrow \widehat {DAB} + \widehat {CAE} = \widehat {HAO} + \widehat {HAC} = \widehat {BAC} = 90^\circ \Rightarrow \widehat {DAE} = 180^\circ \)
⇒ D, A, E thẳng hàng
b. Gọi O là trung diểm BC.
⇒ O là tâm đường tròn ngoại tiếp ∆ABC vuông tại A, đường kính BC
DA = AE ⇒ OA là đường trung bình hình thang BDEC
⇒ OA // BD ⇒ OA ⊥ DE
DE ⊥ OA ⇒ DE tiếp xúc (O), đường kính BC.
Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi
Vui | Buồn | Bình thường |