Cho tam giác ABC với toạ độ ba đỉnh là A(1; 1); B(3; l); C(1; 3). Tính độ dài đường cao AH.
Bằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
Ta có phương trình đường thẳng BC đi qua điểm B(3; 1) có vectơ chỉ phương là vectơ BC→=(−2;2) và có vectơ pháp tuyến là vectơ
n→ (1; 1)
Phương trình tổng quát của BC là: (x – 3) + (y – 1) = 0 ⇔ x + y – 4 = 0.
Đường cao AH đi qua điểm A(1; 1) có véc tơ pháp tuyến là vectơ BC→ (– 2; 2) có phương trình là: – 2(x – 1) + 2(y – 1) = 0 ⇔ – x + y = 0.
Toạ độ điểm H là giao điểm của đường thẳng AH và đường thẳng BC ta có hệ
x+y−4=0−x+y=0⇔x=2y=2 .
Suy ra toạ độ điểm H(2; 2)
Ta có AH = (xH−xA)2+(yH−yA)2=(2−1)2+(2−1)2=2 .
Vậy độ dài đường cao AH là 2.
Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi
Vui | Buồn | Bình thường |