Có hai túi I và II. Túi I chứa 3 tấm thẻ, đánh số 2; 3; 4. Túi II chứa 2 tấm thẻ, đánh số 5; 6. Từ mỗi túi I và II, rút ngẫu nhiên một tấm thẻ. Tính xác suất của các biến cố sau:
A: “Hai số ghi trên hai tấm thẻ chênh nhau 2 đơn vị”;
B: “Hai số ghi trên hai tấm thẻ chênh nhau lớn hơn 2 đơn vị”;
C: “Tích hai số ghi trên hai tấm thẻ là một số chẵn”;
D: “Tổng hai số ghi trên hai tấm thẻ là một số nguyên tố”.
Bằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
Tập các kết quả có thể là tập cặp số (a, b) với a ∈ {2; 3; 4}, b ∈ {5; 6}.
Túi II Túi I | 5 | 6 |
2 | (2, 5) | (2, 6) |
3 | (3, 5) | (3, 6) |
4 | (4, 5) | (4, 6) |
Mỗi ô ở bảng trên là một kết quả có thể.
Không gian mẫu \(\Omega \) = {(2, 5); (2, 6); (3, 5); (3, 6); (4, 5); (4, 6)}.
Vậy có 6 kết quả có thể là đồng khả năng.
− Có 2 kết quả thuận lợi cho biến cố A là (3, 5); (4, 6). Vậy \[P\left( A \right) = \frac{2}{6} = \frac{1}{3}.\]
− Có 3 kết quả thuận lợi cho biến cố B là (2, 5); (2, 6); (3, 6). Vậy \(P\left( B \right) = \frac{3}{6} = \frac{1}{2}.\)
− Có 5 kết quả thuận lợi cho biến cố C là (2, 5); (2, 6); (3, 6); (4, 5); (4, 6). Vậy \[P\left( C \right) = \frac{5}{6}.\]
− Có 1 kết quả thuận lợi cho biến cố D là (2, 5). Vậy \[P\left( D \right) = \frac{1}{6}.\]
Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi
Vui | Buồn | Bình thường |