a) Cho phương trình –x2 + 5kx + 4 = 0. Tìm các giá trị k để phương trình có hai nghiệm x1, x2 thỏa mãn điều kiện
b) Cho phương trình kx2 – 6(k – 1)x + 9(k – 3) = 0 (k ≠ 0). Tìm các giá trị k để phương trình có hai nghiệm x1, x2 thỏa mãn điều kiện x1 + x2 – x1x2 = 0.
Bằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
a) Phương trình có ∆ = (5k)2 ‒ 4.(‒1).4 = 25k2 + 16.
Do k2 ≥ 0 nên 25k2 + 16 > 0.
Do đó phương trình trên có hai nghiệm phân biệt.
Theo định lí Viète ta có: x1 + x2 = 5k; x1x2 = ‒4.
Theo bài, \[x_1^2 + x_2^2 + 6{x_1}{x_2} = 9\]
\[x_1^2 + x_2^2 + 2{x_1}{x_2} + 4{x_1}{x_2} = 9\]
\[{\left( {{x_1} + {x_2}} \right)^2} + 4{x_1}{x_2} = 9\]
Thay x1 + x2 = 5k và x1x2 = ‒4 vào đẳng thức trên ta được:
(5k)2 + 4.(‒4) = 9
25k2 ‒16 = 9
k2 = 1
k = 1 hoặc k = ‒1.
Vậy k ∈ {‒1; 1}.
b) Nếu k ≠ 0, thì phương trình đã cho là phương trình bậc hai, có
∆’ = [‒3(k ‒ 1)]2 ‒ k.9(k ‒ 3)
= (‒3k + 3)2 ‒ 9k2 + 27k
= 9k2 ‒ 18k + 9 ‒ 9k2 + 27k
= 9k + 9.
Để phương trình có hai nghiệm thì ∆ ≥ 0, tức là 9k + 9 ≥ 0 hay k ≥ ‒1.
Theo định lí Viète ta có: \[{x_1} + {x_2} = \frac{{6\left( {k - 1} \right)}}{k};\,\,{x_1}{x_2} = \frac{{9\left( {k - 3} \right)}}{k}.\]
Thay \[{x_1} + {x_2} = \frac{{6\left( {k - 1} \right)}}{k}\] và \[{x_1}{x_2} = \frac{{9\left( {k - 3} \right)}}{k}\] vào đẳng thức x1 + x2 – x1 x2 = 0 ta có:
\[\frac{{6\left( {k - 1} \right)}}{k} - \frac{{9\left( {k - 3} \right)}}{k} = 0\]
\[\frac{{6\left( {k - 1} \right) - 9\left( {k - 3} \right)}}{k} = 0\]
6k ‒ 6 ‒ 9k + 27 = 0
‒3k = ‒21
k = 7 (thỏa mãn điều kiện k ≥ ‒1 và k ≠ 0).
Vậy k = 7.
Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi
Vui | Buồn | Bình thường |