Bài tập  /  Bài đang cần trả lời

Cho ngũ giác đều ABCDE. Về phía ngoài của ngũ giác đó dựng tam giác đều PDE (Hình 24). Tính số đo góc APC.

Cho ngũ giác đều ABCDE. Về phía ngoài của ngũ giác đó dựng tam giác đều PDE (Hình 24). Tính số đo góc APC.

1 Xem trả lời
Hỏi chi tiết
17
0
0
Phạm Văn Bắc
12/09 21:07:58

Tổng số đo tất cả các góc của ngũ giác ABCDE bằng tổng số đo các góc của tam giác ABE và tứ giác BCDE, và bằng: 180° + 360° = 540°.

Do ABCDE là ngũ giác đều suy ra các góc của nó đều bằng nhau và bằng \(\frac{{540^\circ }}{5} = 108^\circ .\)

Do PDE là tam giác đều nên PE = PD = DE và \[\widehat {PDE} = \widehat {PED} = \widehat {EPD} = 60^\circ .\]

Do đó: \(\widehat {AEP} = \widehat {AED} + \widehat {DEP} = 108^\circ + 60^\circ = 168^\circ ;\)

            \(\widehat {CDP} = \widehat {CDE} + \widehat {EDP} = 108^\circ + 60^\circ = 168^\circ .\)

Do ABCDE là ngũ giác đều suy ra DE = EA = DC.

Do đó PE = PD = DE = EA = DC nên các tam giác EAP, DCP là các tam giác cân lần lượt tại các đỉnh E và D.

Suy ra: \(\widehat {EPA} = \frac{{180^\circ - \widehat {AEP}}}{2} = \frac{{180^\circ - 168^\circ }}{2} = 6^\circ ;\)

             \(\widehat {DPC} = \frac{{180^\circ - \widehat {CDP}}}{2} = \frac{{180^\circ - 168^\circ }}{2} = 6^\circ .\)

Vì vậy ta có \(\widehat {APC} = \widehat {EPD} - \widehat {EPA} - \widehat {DPC} = 60^\circ - 6^\circ - 6^\circ = 48^\circ .\)

Mở khóa để xem toàn bộ nội dung trả lời

(?)
Bạn đã đạt đến giới hạn của mình. Bằng cách Đăng ký tài khoản, bạn có thể xem toàn bộ nội dung trả lời
Cải thiện điểm số của bạn bằng cách đăng ký tài khoản Lazi.
Xem toàn bộ các câu trả lời, chat trực tiếp 1:1 với đội ngũ Gia sư Lazi bằng cách Đăng nhập tài khoản ngay bây giờ
Tôi đã có tài khoản? Đăng nhập

Bạn hỏi - Lazi trả lời

Bạn muốn biết điều gì?

GỬI CÂU HỎI
Học tập không giới hạn cùng học sinh cả nước và AI, sôi động, tích cực, trải nghiệm

Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi

Vui Buồn Bình thường
×
Trợ lý ảo Trợ lý ảo
×
Đấu trường tri thức | Lazi Quiz Challenge +500k
Gửi câu hỏi
×