Bài tập  /  Bài đang cần trả lời

Cho hình thoi ABCD có O là giao điểm hai đường chéo, OA = 6 cm, OB = 8 cm. a) Tính độ dài đường cao OH của tam giác AOB. b) Chứng minh đường tròn (O; OH) tiếp xúc với các cạnh của hình thoi. c) Tính độ dài các đoạn thẳng AH và BH.

Cho hình thoi ABCD có O là giao điểm hai đường chéo, OA = 6 cm, OB = 8 cm.

a) Tính độ dài đường cao OH của tam giác AOB.

b) Chứng minh đường tròn (O; OH) tiếp xúc với các cạnh của hình thoi.

c) Tính độ dài các đoạn thẳng AH và BH.

1 Xem trả lời
Hỏi chi tiết
17
0
0
Tô Hương Liên
12/09 21:26:42

a) Do ABCD là hình thoi nên hai đường chéo AC và BD vuông góc nhau.

Áp dụng định lí Pythagore vào ∆AOB vuông tại O, ta có:

\[AB = \sqrt {O{A^2} + O{B^2}} = \sqrt {{6^2} + {8^2}} = \sqrt {36 + 64} = \sqrt {100} = 10\,\,{\rm{(cm}}).\]

Ta có \[{S_{\Delta OAB}} = \frac{1}{2} \cdot OA \cdot OB = \frac{1}{2} \cdot OH \cdot AB\]

Suy ra OA.OB = OH.AB

Do đó \(OH = \frac = \frac = 4,8\;(\;{\rm{cm}}).\)

b) Lần lượt vẽ các đường cao OK, OE, OF của tam giác BOC, COD, DOA.

Ta có bốn tam giác vuông AOB, AOD, COD, COB bằng nhau (c.g.c), suy ra bốn đường cao OH, OF, OE, OK cũng bằng nhau. Do khoảng cách từ O đến bốn cạnh của hình thoi đều bằng OH nên đường tròn (O; OH) tiếp xúc với các cạnh của hình thoi.

c) Xét tam giác OAB vuông tại O có: \(\cos \widehat {OAH} = \frac.\)

Xét tam giác OAH vuông tại H có:

\(AH = OA \cdot \cos \widehat {OAB} = OA \cdot \frac = \frac{{O{A^2}}} = \frac{{{6^2}}} = 3,6\;(\;{\rm{cm}}).\)

Do đó BH = AB – AH = 10 – 3,6 = 6,4 (cm).

Mở khóa để xem toàn bộ nội dung trả lời

(?)
Bạn đã đạt đến giới hạn của mình. Bằng cách Đăng ký tài khoản, bạn có thể xem toàn bộ nội dung trả lời
Cải thiện điểm số của bạn bằng cách đăng ký tài khoản Lazi.
Xem toàn bộ các câu trả lời, chat trực tiếp 1:1 với đội ngũ Gia sư Lazi bằng cách Đăng nhập tài khoản ngay bây giờ
Tôi đã có tài khoản? Đăng nhập

Bạn hỏi - Lazi trả lời

Bạn muốn biết điều gì?

GỬI CÂU HỎI
Học tập không giới hạn cùng học sinh cả nước và AI, sôi động, tích cực, trải nghiệm

Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi

Vui Buồn Bình thường
×
Trợ lý ảo Trợ lý ảo
×
Đấu trường tri thức | Lazi Quiz Challenge +500k
Gửi câu hỏi
×