Cho hình thoi ABCD có O là giao điểm hai đường chéo, OA = 6 cm, OB = 8 cm.
a) Tính độ dài đường cao OH của tam giác AOB.
b) Chứng minh đường tròn (O; OH) tiếp xúc với các cạnh của hình thoi.
c) Tính độ dài các đoạn thẳng AH và BH.
Bằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
a) Do ABCD là hình thoi nên hai đường chéo AC và BD vuông góc nhau.
Áp dụng định lí Pythagore vào ∆AOB vuông tại O, ta có:
\[AB = \sqrt {O{A^2} + O{B^2}} = \sqrt {{6^2} + {8^2}} = \sqrt {36 + 64} = \sqrt {100} = 10\,\,{\rm{(cm}}).\]
Ta có \[{S_{\Delta OAB}} = \frac{1}{2} \cdot OA \cdot OB = \frac{1}{2} \cdot OH \cdot AB\]
Suy ra OA.OB = OH.AB
Do đó \(OH = \frac = \frac = 4,8\;(\;{\rm{cm}}).\)
b) Lần lượt vẽ các đường cao OK, OE, OF của tam giác BOC, COD, DOA.
Ta có bốn tam giác vuông AOB, AOD, COD, COB bằng nhau (c.g.c), suy ra bốn đường cao OH, OF, OE, OK cũng bằng nhau. Do khoảng cách từ O đến bốn cạnh của hình thoi đều bằng OH nên đường tròn (O; OH) tiếp xúc với các cạnh của hình thoi.
c) Xét tam giác OAB vuông tại O có: \(\cos \widehat {OAH} = \frac.\)
Xét tam giác OAH vuông tại H có:
\(AH = OA \cdot \cos \widehat {OAB} = OA \cdot \frac = \frac{{O{A^2}}} = \frac{{{6^2}}} = 3,6\;(\;{\rm{cm}}).\)
Do đó BH = AB – AH = 10 – 3,6 = 6,4 (cm).
Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi
Vui | Buồn | Bình thường |