Cho góc vuông xOy có hai cạnh tiếp xúc với đường tròn (I; R) tại A, B. Cho biết chu vi của tứ giác OAIB bằng 20 cm. Tính R và độ dài AB.
Bằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
Ta có Ox và Oy tiếp xúc với (I; R) lần lượt tại A và B
Suy ra IA ⊥ Ox tại A, IB ⊥ Oy tại B và IA = IB = R.
Tứ giác OAIB có ba góc vuông \(\left( {\widehat {AOB} = \widehat {OAI} = \widehat {OBI} = 90^\circ } \right)\) và có hai cạnh kề bằng nhau (IA = IB) nên OAIB là hình vuông. Do đó IA = IB = OA = OB = R.
Khi đó, chu vi của hình vuông OAIB là 4R.
Theo bài, chu vi của tứ giác OAIB bằng 20 cm nên 4R = 20, suy ra R = 5 cm.
Xét ∆IAB vuông tại I, theo định lí Pythagore, ta có:
AB2 = IA2 + IB2 = 2R2 = 2.52 = 50.
Suy ra \(AB = \sqrt {50} = 5\sqrt 2 \;({\rm{cm}}).\)
Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi
Vui | Buồn | Bình thường |