Bằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
Hướng dẫn giải
Phương trình chính tắc của (P) có dạng y2 = 2px, trong đó p > 0.
Vì (P) có đường chuẩn là Δ: x + 4 = 0 ⇔ x = –4 ⇔ –p : 2 = –4 ⇔ p = 8
Vậy phương trình chính tắc của (P) là y2 = 16x.
Gọi M (x0; y0).
Vì M thuộc (P) nên ta có:
d(M, Δ) = MF = 5 với F là tiêu điểm của (P) và F(4; 0).
\( \Leftrightarrow \frac{{\left| {{x_0} + 4} \right|}}{{\sqrt {{1^2} + {0^2}} }} = 5\)
⇔ |x0 + 4| = 5 (*)
TH1: x0 + 4 ≥ 0 hay x0 ≥ –4
(*) ⇔ x0 + 4 = 5 ⇔ x0 = 1 (thỏa mãn)
TH2: x0 + 4 < 0 hay x0 < –4
(*) ⇔ –x0 – 4 = 5 ⇔ x0 = –9 (thỏa mãn)
Với x0 = –9, thay vào phương trình của (P) ta được y02 = 16.(–9) = –144 < 0 (không thể tồn tại)
Với x0 = 1, thay vào phương trình của (P) ta được y02 = 16.1 = 16 ⇔ y0 = ±4
Vậy M(1; 4) hoặc M(1; –4).
Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi
Vui | Buồn | Bình thường |