Bài tập  /  Bài đang cần trả lời

Một xưởng sản xuất có hai máy đặc chủng A, B sản xuất hai loại sản phẩm X, Y. Để sản xuất một tấn sản phẩm X cần dùng máy A trong 6 giờ và dùng máy B trong 2 giờ. Để sản xuất một tấn sản phẩm Y cần dùng máy A trong 2 giờ và dùng máy B trong 2 giờ. Cho biết mỗi máy không thể sản xuất đồng thời hai loại sản phẩm. Máy A làm việc không quá 12 giờ một ngày; máy B làm việc không quá 8 giờ một ngày. Một tấn sản phẩm X lãi 10 triệu đồng và một tấn sản phẩm Y lãi 8 triệu đồng. Hãy lập kế hoạch sản xuất ...

Một xưởng sản xuất có hai máy đặc chủng A, B sản xuất hai loại sản phẩm X, Y. Để sản xuất một tấn sản phẩm X cần dùng máy A trong 6 giờ và dùng máy B trong 2 giờ. Để sản xuất một tấn sản phẩm Y cần dùng máy A trong 2 giờ và dùng máy B trong 2 giờ. Cho biết mỗi máy không thể sản xuất đồng thời hai loại sản phẩm. Máy A làm việc không quá 12 giờ một ngày; máy B làm việc không quá 8 giờ một ngày. Một tấn sản phẩm X lãi 10 triệu đồng và một tấn sản phẩm Y lãi 8 triệu đồng. Hãy lập kế hoạch sản xuất mỗi ngày sao cho tổng số tiền lãi cao nhất.

1 Xem trả lời
Hỏi chi tiết
35
0
0
Trần Bảo Ngọc
13/09 07:47:28

Gọi x (tấn) là khối lượng sản phẩm X mà xưởng sản xuất ra trong một ngày; y(tấn) là khối lượng sản phẩm Y mà xưởng sản xuất ra trong một ngày.

Hiển nhiên x ≥ 0 và y ≥ 0.

Để sản xuất x tấn sản phẩm X cần dùng máy A trong 6x (giờ) ; để sản xuất y tấn sản phẩm Y cần dùng máy A trong 2y (giờ).

Tổng số giờ dùng máy A trong một ngày là 6x + 2y (giờ).

Do máy A làm việc không quá 12 giờ một ngày nên ta có bất phương trình :

6x + 2y ≤ 12, hay 3x + y ≤ 6.

Để sản xuất x tấn sản phẩm X cần dùng máy B trong 2x (giờ) ; để sản xuất y tấn sản phẩm Y cần dùng máy B trong 2y (giờ).

Tổng số giờ dùng máy B trong một ngày là 2x + 2y (giờ).

Do máy B làm việc không quá 8 giờ một ngày nên ta có bất phương trình : 2x + 2y ≤ 8, hay x + y ≤ 4.

Vậy ta có hệ bất phương trình : x≥0y≥03x + y≤ 6x + y ≤ 4

Biểu diễn miền nghiệm của hệ trên mặt phẳng tọa độ Oxy ta được hình sau :

Miền nghiệm của hệ là miền tứ giác OABC (bao gồm cả các cạnh) với các đỉnh O(0 ; 0) ; A (2 ; 0) ; B(1 ; 3) ; C(0 ; 4).

Gọi F (triệu đồng) là số tiền lãi thu được.

Với x tấn sản phẩm X thì số tiền lãi là 10x (triệu đồng) ; với y tấn sản phẩm Y thì số tiền lãi là 8y (triệu đồng). Tổng số tiền lãi là 10x + 8y (triệu đồng).

Do đó F =10x + 8y

Tính giá trị của F tại các đỉnh của tứ giác OABC :

Tại O (0 ; 0): F = 10.0 + 8.0 = 0;

Tại A (2 ; 0): F= 10.2 + 8.0 = 20 ;

Tại B(1 ; 3): F = 10.1 + 8.3 = 34;

Tại C(0 ; 4): F = 10.0 + 8.4 = 32.

F đạt giá trị lớn nhất là 34 tại B(1 ; 3) 

Vậy để tổng số tiền lãi cao nhất thì xưởng phải sản xuất 1 tấn sản phẩm X và 3 tấn sản phẩm Y.

Mở khóa để xem toàn bộ nội dung trả lời

(?)
Bạn đã đạt đến giới hạn của mình. Bằng cách Đăng ký tài khoản, bạn có thể xem toàn bộ nội dung trả lời
Cải thiện điểm số của bạn bằng cách đăng ký tài khoản Lazi.
Xem toàn bộ các câu trả lời, chat trực tiếp 1:1 với đội ngũ Gia sư Lazi bằng cách Đăng nhập tài khoản ngay bây giờ
Tôi đã có tài khoản? Đăng nhập

Bạn hỏi - Lazi trả lời

Bạn muốn biết điều gì?

GỬI CÂU HỎI
Học tập không giới hạn cùng học sinh cả nước và AI, sôi động, tích cực, trải nghiệm
Câu hỏi liên quan

Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi

Vui Buồn Bình thường
×
Trợ lý ảo Trợ lý ảo
×
Đấu trường tri thức | Lazi Quiz Challenge +500k
Gửi câu hỏi
×